• Title/Summary/Keyword: concrete systems

Search Result 1,528, Processing Time 0.029 seconds

Flexural Design of Externally Bonded FRP Systems for Strengthening Concrete Structures (섬유판보강공법에서 휨설계식에 대한 연구)

  • 서정국;임종범;최완철
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2002.10a
    • /
    • pp.463-468
    • /
    • 2002
  • For the Externally bonded FRP systems, flexural design method is studied focusing on the reinforcement layer of the carbon fiber sheets. As the FRP layer is added, strengthening rate increases, but not proportionally as the FRP layer increases. This is reflected in the design formula appropriately by the bond cofficients from the added layers. As the number of FRP layer increases, the stress reinforcement and FRP sheet decreases, and it generally corresponds to the decrease rate of member flexural strength. This phenomenon is appearing indentically in a design formula and experimental result. The rate of $M_{test}$ and $M_n$ is 1.19 and it is estimated as safety factor which is the reduction factor, ${\psi}_f = 0.85$.

  • PDF

A Study on the Development of Rolled Dry Floor Heating System for Improving Workability (현장 시공성 개선을 위한 롤타입 건식바닥난방시스템 개발)

  • Lee, Gyu-Dong;Kim, Jun-Ho;Jeong, Chang-Ho;Kim, Dong-Woo;Ogawa, Keiichiro
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2012.11a
    • /
    • pp.177-180
    • /
    • 2012
  • Korea residential housing generally use wet floor heating system 'Ondol' which consist of insulation cushioning, lightweight foamed concrete, hot water pipe and mortar on top of reinforced concrete slab. Wet floor heating system's installation process is too complicate and difficult to supervise field for continuing assurance quality. Also, this method has a huge impact on the progress of construction because it take a long time to cure finishing mortar and lightweight foamed concrete. Therefore, it is considered a disturbance factor of reduction of construction duration for enhancing competitiveness. In this study, we conducted an experiment about the radiant heat performance and temperature difference on upper panel of rolled dry floor heating systems which is jointly developed by Kolon global and Sumisho Metalex for remodeling housing, studio apartment and the urban-life housing.

  • PDF

Development of System Repairing & Reinforcing for Irrigation & Draingage Structure (농업기반 수리구조물의 보수보강 공법 시스템 구축)

  • Kim, Kwan-Ho;Park, Kwang-Su;Kim, Myeong-Won;Lee, Joon-Gu;Kim, Han-Joong
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2005.11a
    • /
    • pp.153-156
    • /
    • 2005
  • It is not feasible for agricultural facility managers to estimate how severe damages are and what are causes of them when agricultural hydraulic facilities get damaged for some reasons. Moreover, it is nearly impossible for agricultural facility managers to take immediate actions to repair and reinforce the damaged structures. Thus, there have been needs for well-established systems to help agricultural facility managers understand its severity and causes, and take proper actions to reduce speed of deterioration and to repair/reinforce them. Thus repairing and reinforcing systems of agricultural hydraulic structures based on agricultural facility management policies, developed in this study, can be efficiently used in field works to determine top priority location and the budget of repairing and reinforcing projects if detailed information of damages in concrete structures and damage types are well compiled and classified with standardized image data complemented.

  • PDF

Experimental Study on the Performance of Korean PS Anchorage System in terms of Load Transfer Test (한국형 PS정착구의 하중전달성능에 관한 연구)

  • Kim, Jin-Kook;Lee, Pil-Goo;Jang, Seok-Youn
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2009.05a
    • /
    • pp.37-38
    • /
    • 2009
  • In this paper, the load transfer test of Korean PS anchorage system was conducted for 1860MPa PS strand and 2200MPa PS strand. The test is in compliance with ETAG013. All the anchorage system tested satisfied the allowance criteria of the test for 1860MPa PS strand but only one of the anchorage systems for 2200MPa PS strand. In order to generally use 2200MPa PS strand to prestressed concrete structures, new anchorage systems shall be developed.

  • PDF

Development of system repairing & reinforcing for irrigation & draingage structure (농업기반 수리구조물의 보수보강 공법 시스템 구축)

  • Kim, Kwan-Ho;Park, Kwang-Su;Kim, Myeong-Won;Lee, Joon-Gu;Kim, Han-Joong
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2005.05b
    • /
    • pp.289-292
    • /
    • 2005
  • It is not feasible for agricultural facility managers to estimate how severe damages are and what are causes of them when agricultural hydraulic facilities get damaged for some reasons. Moreover, it is nearly impossible for agricultural facility managers to take immediate actions to repair and reinforce the damaged structures. Thus, there have been needs for well-established systems to help agricultural facility managers understand its severity and causes, and take proper actions to reduce speed of deterioration and to repair/reinforce them. Thus repairing and reinforcing systems of agricultural hydraulic structures based on agricultural facility management policies, developed in this study, can be efficiently used in field works to determine top priority location and the budget of repairing and reinforcing projects if detailed information of damages in concrete structures and damage types are well compiled and classified with standardized image data complemented.

  • PDF

Preliminary Structural Design of Wall-Frame Systems for Optimum Torsional Response

  • Georgoussis, George K.
    • International Journal of Concrete Structures and Materials
    • /
    • v.11 no.1
    • /
    • pp.45-58
    • /
    • 2017
  • Recent investigations have pointed out that current code provisions specifying that the stiffness of reinforced concrete elements is strength independent, and therefore can be estimated prior to any strength assignment, is incorrect. A strength allocation strategy, suitable for preliminary structural design of medium height wall-frame dual systems, is presented for allocating strength in such buildings and estimating the dependable rigidities. The design process may be implemented by either the approximate continuous approach or the stiffness matrix method. It is based on the concept of the inelastic equivalent single-degree-of-freedom system which, the last few years, has been used to implement the performance based seismic design. The aforesaid strategy may also be used to determine structural configurations of minimum rotation distortion. It is shown that when the location of the modal centre of rigidity, as described in author's recent papers, is within a close distance from the mass axis the torsional response is mitigated. The methodology is illustrated in ten story building configurations, whose torsional response is examined under the ground motion of Kobe 1995, component KJM000.

Cyclic loading tests for precast concrete cantilever walls with C-type connections

  • Lim, Woo-Young;Hong, Sung-Gul
    • Earthquakes and Structures
    • /
    • v.7 no.5
    • /
    • pp.753-777
    • /
    • 2014
  • This study investigates the behavior of precast concrete cantilever wall systems with new vertical connections under cyclic loading. C-type steel connections for PC wall systems are proposed for the transfer of bending moments between walls in the vertical direction, whereas a shear key in the center of the wall is prepared to transfer shear forces by bearing pressure. The proposed connections are assembled easily because the directions of the slots are different at the edges of the walls. Structural performance characteristics such as the strength, ductility, and failure modes of test specimens were investigated. The longitudinal reinforcing steel bars, which are connected to the C-type connections, yielded first. Ultimate deformation was terminated owing to premature failure of the connections. The strength and deformation obtained from the cross-sectional analysis were generally similar to experimental data.

Optimization of Surface Treatment System for Concrete Structures to Control Chloride Penetration (콘크리트 구조물용 표면도장공법의 차염성능의 최적화에 대한 연구)

  • Lee Chang-Soo;Sung Jae-Duk;Yoon In-Seok
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2004.11a
    • /
    • pp.233-236
    • /
    • 2004
  • The purpose of this paper is to evaluate performance on reducing the chloride diffusion of surface treatment systems with elapsed time, treatment thickness, treatment frequency, and the types of surface treatment - coating, penetrator, and both all. Based on this paper, the guideline to applicate surface treatment systems will be established and comprehended how effective the resistance of chloride diffusion is. The selection of surface treatment materials and thickness to acquire service life of target will be possible. It is also expected to select optimum surface treatment system groups to resist chloride diffusion effectively and to estimate increased service life as the effect of durability enhancement.

  • PDF