• Title/Summary/Keyword: concrete stress block

Search Result 95, Processing Time 0.027 seconds

Stress Analysis Acting on Electric Pole using Strain Gauge from Full Scale Pull-Out Test (실물인장실험시 변형률계를 이용한 전주에 작용하는 응력분석)

  • Ahn, Tae-Bong
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.24 no.9
    • /
    • pp.49-55
    • /
    • 2010
  • Many electric poles in the softground have been collapsed due to external load. In this study, 10 types of tests were performed with variation of location, numbers and depths of anchor blocks as well as depth of poles to find stresses acting on concrete electric poles. The stresses of concrete poles are relaxed at 600~700[kg] of tensile load, and stresses are concentrated at top of pole, and spread to lower part of pole. In the concrete pole collapse test, tensile load at failure was approximately 1,400[kg], which is twice of design load. As passive zone in the soil increases, the stresses acting on concrete pole are concentrated at lower part of pole based on moment arm earth pressure distribution.

Evaluation on the Effect of the Size of Placing Block(L/H) and Elastic Modulus of Base Structure on the Thermal Stress in Mass Concrete (매스콘크리트에서 타설블럭의 크기(L/H)와 구속체의 탄성계수가 온도응력에 미치는 영향에 관한 검토)

  • 강석화;이용호;박칠림
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 1996.04a
    • /
    • pp.275-279
    • /
    • 1996
  • In this study, the effect of external restraint on the thermal stresses and thermal cracking mode in mass concrete are analysed using the two major factors affecting external restraint such as the ratio of width go height of the placed structure (L/H) and the elastic modulus of base structure (E). For this parametric study, many cases with different values of L/H and Er are analysed by the FEM program and the co-relationship of the those major factors is examined. To evaluate the effect of external restraint on the thermal behavior of placing structure, internal restraint stress caused by temperature difference is subtracted from total thermal stress. In the case of small value of L/H or Er, it shows as internally restricted mode indicating maximum tensile stress in surface at early age, and the external restraint makes the possibility of thermal cracking higher. However, in the case of the large values of L/H and Er, the crack index at center is smaller than at surface due to the effect of external restraint. Thus, the initial location of the thermal crack is shifted from the surface to the center and the resulting crack is formed at later age.

  • PDF

Hydration Heat Analysis of Mass Concrete considering Heat Transfer Coefficient and Hydration Heat Difference (수화발열량차 및 열전달계수 변화를 고려한 매스콘크리트의 수화열 해석)

  • Han, Seung-Baek;Lee, Seong-Su;Shin, Hyo-Bum;Kim, Ho-Soo
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2008.11a
    • /
    • pp.249-252
    • /
    • 2008
  • In recent large-scale structures, as mass concrete type structure is frequently applied to the building, temperature crack due to hydration heat needs to be considered. Since a volume change is internally or externally restricted in a mold after placing concrete, temperature crack of mass concrete takes place. By this reason, the reduction method to control this crack is required. In this study, low heat mixture and hydration heat difference is used to execute the analysis of hydration heat, considering the changes of heat transfer coefficient according to curing conditions and block placement of mass concrete. For the analytical modelling, original portland cement and concrete of low heat mixture are placed in the upper and lower payer, respectively. A convection boundary condition is fixed because mass concrete of block placement is characterized by the difference of mold form and curing condition. Through the analysis results considering the changes of low heat mixture, block placement, and heat transfer coefficient, we check out the temperature and stress distribution and analyze the temperature crack reduction effect.

  • PDF

The Study of Pullout-Behavior Characteristics of The Ground Anchor Using Expanded Hole (확공을 이용한 지압형 앵커의 인발거동 특성 연구)

  • Min, Kyong-Nam;Jung, Chan-Mook;Jung, Dae-Ho
    • Proceedings of the KSR Conference
    • /
    • 2011.05a
    • /
    • pp.1502-1508
    • /
    • 2011
  • Ground anchor expands the hollow wall of settled part and has the structure which resists the designed tensile load by the bearing pressure generated by the wedge of the anchor body pressing in the expanded part. Such ground anchor has been recognized for stability and economicality since 1960s in technologically advanced nations such as Japan and Europe, and in 1970s, the Japan Society of Soil Engineering has established and announced the anchor concept map. The ground anchor introduced in Korea, however, has the structural problem where the tensile strength is comes only from the ground frictional force due to expansion of the wedge body. In an interval where the ground strength is locally reduced due to fault, discontinuation or such, this is pointed out as a critical weakness where the anchor body of around 1.0m must resist the tensile load. Also, in the installation of concrete block, the concentrated stress of concrete block constructed on the uneven rock surface causes damage, and many such issues in the anchor head have been reported. Thus, in this study, by using the expanded bit for precise expansion of settled part, the ground anchor system was completed so that the bearing pressure of ground anchor can be expressed as much as possible, and the bearing plate was inserted into the ground to resolve the existing issues of concrete block. Through numerical analysis and pullout test executed for verification of site applicability, the pullout-behavior characteristics of anchor was analyzed.

  • PDF

Numerical simulation of an external prestressing technique for prestressed concrete end block

  • Murthy, A. Rama Chandra;Ganapathi, S. Chitra;Saibabu, S.;Lakshmanan, N.;Jayaraman, R.;Senthil, R.
    • Structural Engineering and Mechanics
    • /
    • v.33 no.5
    • /
    • pp.605-619
    • /
    • 2009
  • This paper presents the details of finite element (FE) modeling and analysis of an external prestressing technique to strengthen a prestressed concrete (PSC) end block. Various methods of external prestressing techniques have been discussed. In the proposed technique, transfer of external force is in shear mode on the end block creating a complex stress distribution. The proposed technique is useful when the ends of the PSC girders are not accessible. Finite element modeling issues have been outlined. Brief description about material nonlinearity including key aspects in modeling inelastic behaviour has been provided. Finite element (FE) modeling including material, loading has been explained in depth. FE analysis for linear and nonlinear static analysis has been conducted for varying external loadings. Various responses such as out-of-plane deformation and slip have been computed and compared with the corresponding experimental observations. From the study, it has been observed that the computed slope and slip of the steel bracket under external loading is in good agreement with the corresponding experimental observations.

Evaluation of Thermal Characteristics in Association with Cement Types in Massive Concrete Structure (매스콘크리트 구조물에서의 시멘트 종류별 수화발열 특성 평가)

  • 김상철;강석화;김진근
    • Journal of the Korea Concrete Institute
    • /
    • v.11 no.6
    • /
    • pp.3-12
    • /
    • 1999
  • The larger, loftier and more highly strengthened the recent structures become, the greater attention is paid to the problem of thermal crack occurrence associate with hydration heat. As one of methods to solve the problem, a care has been taken to the improvement of construction such as the application of pre-cooling or pipe-cooling, adjustment of concrete block size, concrete placement timing, joint arrangement and so on. But it is expected that a proper selection of cement shall additionally contribute to the control of thermal cracks. In this study, thus, we selected 4 types of cements such as Type V for anti-sulphate, blast furnace cements (slag content of 45% and 65% respectively)and ternary blended low heat cement, and carried out mock-up tests. In every assigned time, temperatures and thermal stresses were measured and calculated from raw data. As a result of measurement, it was found that the magnitude of hydration heat is in order of blast furnace slag cement. Type V and ternary blended low heat cement. Results of thermal stresses were same as the order of temperature. In addition, thermal stresses calculated from the data of strain gauges showed almost similar to those measured from effective stress gauges only when strain values were adjusted properly in accordance with initial time of stress appearance. Theoretical results agreed well with the measured values comparatively, but showed slight differences. It is inferred that these differences shall be reduced if more tests capable of evaluating thermal characteristics of concrete are carried out.

Assessment of the Anchor Head System Embedded in the Ground Surface (지표면에 근입한 앵커두부처리 시스템의 적용성 평가)

  • Min, Kyoung-Nam;Bae, Woo-Seok;Ahn, Kwang-Kuk;Jeong, Ku-Sic
    • The Journal of Engineering Geology
    • /
    • v.22 no.1
    • /
    • pp.49-58
    • /
    • 2012
  • Anchor heads a recommonly exposed to surface weathering processes that cause physical damage by vibration and external forces. This study presents a new method of anchor-head installation that uses near-surface embedding based on analyses of concrete block failure. ABAQUS 3D numerical modeling performed to compare this method with the standard technique and to analyze the distribution of displacement and the stress pattern. In addition, application of the method to a real-world case was tested by in-situ measurements. The results show a maximum vertical stress of 9.73 MPa and vertical displacement of 1.34 mm. Field tests indicated that displacement of a concrete block was 3 to 4 times greater than that of an embedded bearing plate.

Reinforced Concrete Wall under In-Plane Flexure at Ultimate State (철근콘크리트 벽체의 극한상태 면내 휨에 대한 고려)

  • 김장훈;김지현;박홍근;홍성걸
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2001.05a
    • /
    • pp.891-896
    • /
    • 2001
  • The determination of compressive zone at the critical section of concrete walls under in-plane flexure is important in both assessing the ductility and designing the seismic retrofit. Recognizing this, the once-predominated code approach to determine the compressive zone was advanced by considering concrete rectangular stress block parameters varying with the extreme fiber strain in compression. It is shown that the major factors influencing the magnitude of compressive zone are axial load ratio, concrete strength, longitudinal steel ratio, yield strength and the level of strain at extreme compression fiber of wall sections. The present paper closes with the discussion for the research agenda requiring further study to investigate the behavior of reinforced concrete walls.

  • PDF

Experimental and numerical investigation on in-plane behaviour of hollow concrete block masonry panels

  • Murthy, A. Rama Chandra;Ganapathi, S. Chitra;Iyer, Nagesh R.;Lakshmanan, N.;Bhagavan, N.G.
    • Computers and Concrete
    • /
    • v.10 no.1
    • /
    • pp.1-18
    • /
    • 2012
  • This paper presents the details of studies conducted on hollow concrete block masonry (HCBM) units and wall panels. This study includes, compressive strength of unit block, ungrouted and grouted HCB prisms, flexural strength evaluation, testing of HCBM panels with and without opening. Non-linear finite element (FE) analysis of HCBM panels with and without opening has been carried out by simulating the actual test conditions. Constant vertical load is applied on the top of the wall panel and then lateral load is applied in incremental manner. The in-plane deformation is recorded under each incremental lateral load. Displacement ductility factors and response reduction factors have been evaluated based on experimental results. From the study, it is observed that fully grouted and partially reinforced HCBM panel without opening performed well compared to other types of wall panels in lateral load resistance and displacement ductility. In all the wall panels, shear cracks originated at loading point and moved towards the compression toe of the wall. The force reduction factor of a wall panel with opening is much less when compared with fully reinforced wall panel with no opening. The displacement values obtained by non-linear FE analysis are found to be in good agreement with the corresponding experimental values. The influence of mortar joint has been included in the stress-strain behaviour as a monolith with HCBM and not considered separately. The derived response reduction factors will be useful for the design of reinforced HCBM wall panels subjected to lateral forces generated due to earthquakes.