• 제목/요약/키워드: concrete shear key

검색결과 223건 처리시간 0.027초

Shear behavior of a demountable bolted connector in steel-UHPC lightweight composite structures

  • Gu, Jin-Ben;Wang, Jun-Yan
    • Structural Engineering and Mechanics
    • /
    • 제81권5호
    • /
    • pp.551-563
    • /
    • 2022
  • Bolted connector could be an alternative to replace the conventional welded headed stud in steel-ultra high performance concrete (UHPC) lightweight composite structures. In this paper, a novel demountable bolted shear connector, consisting of a high-strength bolt (HSB) and a specially-designed nut which is pre-embedded in a thin UHPC slab, is proposed, which may result in the quick installation and disassembly, due to the mountable, demountable and reusable features. In order to study the shear behavior of the new type of bolted shear connector, static push-out tests were conducted on five groups of the novel demountable bolted shear connector specimens and one group of conventional welded headed stud specimen for comparison. The effect of the bolt shank diameter and aspect ratio of bolt on failure mode, shear stiffness, peak slip at the steel-UHPC interface, shear strength and ductility of novel bolted connectors is investigated. Additionally, design formula for the shear strength is proposed to check the suitability for assessment of the novel demountable bolted shear connectors.

프리캐스트 포스트텐션 콘크리트 보-기둥 접합부의 전단성능 (Shear Resistance Capacity of Precast Post-tensioned Concrete Beam-Column Connection)

  • 조경호;이종규;최광호;김상식
    • 한국콘크리트학회:학술대회논문집
    • /
    • 한국콘크리트학회 2000년도 가을 학술발표회논문집(I)
    • /
    • pp.769-774
    • /
    • 2000
  • The first thing in developing precast post-tensioned concrete frame system verify the shear resistance capacity of the beam-column connection at which the transfer of member forces become discontinuous. Complying with the necessity of such experimental research, shear tests have been performed for six test specimens which were cast and cured at Dong-Ah Concrete Manufacturing Company and post-tensioning at Concrete Laboratory of Inha University. Shear key and magnitude of post-tensioned force are taken test variables. From the test results, it has been observed that the shear resistance of the specimens attained to higher values than those of theoritical calculations based on the shear friction with shear friction coefficient being 0.6.

  • PDF

전단보강철근이 없는 RC보의 트러스 해석기법 연구 (Development of A New Truss Model for RC Beams without Web Reinforcement)

  • 김지훈;정제평;김우
    • 한국콘크리트학회:학술대회논문집
    • /
    • 한국콘크리트학회 2001년도 가을 학술발표회 논문집
    • /
    • pp.1109-1114
    • /
    • 2001
  • This paper describes an attempt to develop a new truss model for reinforced concrete beams failing in shear based on a rational behavioral model. The key idea incorporated with truss model is the internal force state factor which is able to express global state of internal force flow in cracked reinforced concrete beams subjected to shear and bending. A new truss model using internal force state factor may provide a comprehensive result of shear strength in reinforced concrete beams without web reinforcement.

  • PDF

교량구간 프리캐스트 콘크리트 슬래브궤도의 수평전단 거동 (Horizontal Shear Behavior of Precast Concrete Slab Track on Bridge)

  • 장승엽;나성훈;김유봉;안기홍
    • 한국철도학회:학술대회논문집
    • /
    • 한국철도학회 2011년도 춘계학술대회 논문집
    • /
    • pp.998-1001
    • /
    • 2011
  • The concrete track on bridge should be designed to effectively cope with the behavior of the bridge superstructure. For this purpose, in general, shear keys are designed to be installed at a certain intervals on the bridge deck, and the track slab is cast on these shear keys to transfer the load induced by the relative displacement between track and bridge. In this study, to apply the precast concrete slab track on bridge, a shear key structure and its effective installation method are presented. Also, the structural behavior of this shear key has been evaluated by the laboratory mock-up test.

  • PDF

Dynamic characteristics analysis of partial-interaction composite continuous beams

  • Fang, Genshen;Wang, Jingquan;Li, Shuai;Zhang, Shubin
    • Steel and Composite Structures
    • /
    • 제21권1호
    • /
    • pp.195-216
    • /
    • 2016
  • The dynamic characteristics of continuous steel-concrete composite beams considering the effect of interlayer slip were investigated based on Euler Bernoulli's beam theory. A simplified calculation model was presented, in which the Mode Stiffness Matrix (MSM) was developed. The natural frequencies and modes of partial-interaction composite continuous beams can be calculated accurately and easily by the use of MSM. Proceeding from the present method, the natural frequencies of two-span steel-concrete composite continuous beams with different span-ratios (0.53, 0.73, 0.85, 1) and different shear connection stiffnesses on the interface are calculated. The influence pattern of interfacial stiffness on bending vibration frequency was found. With the decrease of shear connection stiffness on the interface, the flexural vibration frequencies decrease obviously. And the influence on low order modes is more obvious while the reduction degree of high order is more sizeable. The real natural frequencies of partial-interaction continuous beams commonly used could have a 20% to 40% reduction compared with the fully-interaction ones. Furthermore, the reduction-ratios of natural frequencies for different span-ratios two-span composite beams with uniform shear connection stiffnesses are totally the same. The span-ratio mainly impacts on the mode shape. Four kinds of shear connection stiffnesses of steel-concrete composite continuous beams are calculated and compared with the experimental data and the FEM results. The calculated results using the proposed method agree well with the experimental and FEM ones on the low order modes which mainly determine the vibration properties.

Test study of precast SRC column under combined compression and shear loading

  • Chen, Yang;Zhu, Lanqi;Yang, Yong
    • Steel and Composite Structures
    • /
    • 제42권2호
    • /
    • pp.265-275
    • /
    • 2022
  • A new type of precast steel reinforced concrete (PSRC) column was put forward in this paper. In order to study the static performance of PSRC column and hollow precast steel reinforced concrete (HPSRC) column subjected to combined compression and shear loading, a parametric test was carried out and effects of axial compression ratio, concrete strength and shear ratio on the mechanical behavior of composite PSRC column and HPSRC column were explored. In addition, the cracks development, load-span displacement relationship, strain distribution and shear bearing strength of column specimens were emphatically focused. Test results implied that shear failure of all specimens occurred during the test, and higher strength of cast-in-place concrete, smaller shear ratio and larger axial compression ratio could lead to greater shear resistance, but when the axial compression ratio was larger than 0.36, the shear capacity began to decrease gradually. Furthermore, truss-arch model for determining the shear strength of PSRC column and HPSRC column was proposed and the calculated results obtained from proposed method were verified to be valid.

2-D meso-scale complex fracture modeling of concrete with embedded cohesive elements

  • Shen, Mingyan;Shi, Zheng;Zhao, Chao;Zhong, Xingu;Liu, Bo;Shu, Xiaojuan
    • Computers and Concrete
    • /
    • 제24권3호
    • /
    • pp.207-222
    • /
    • 2019
  • This paper has presented an effective and accurate meso-scale finite element model for simulating the fracture process of concrete under compression-shear loading. In the proposed model, concrete is parted into four important phases: aggregates, cement matrix, interfacial transition zone (ITZ), and the initial defects. Aggregate particles were modelled as randomly distributed polygons with a varying size according to the sieve curve developed by Fuller and Thompson. With regard to initial defects, only voids are considered. Cohesive elements with zero thickness are inserted into the initial mesh of cement matrix and along the interface between aggregate and cement matrix to simulate the cracking process of concrete. The constitutive model provided by ABAQUS is modified based on Wang's experiment and used to describe the failure behaviour of cohesive elements. User defined programs for aggregate delivery, cohesive element insertion and modified facture constitutive model are developed based on Python language, and embedded into the commercial FEM package ABAQUS. The effectiveness and accuracy of the proposed model are firstly identified by comparing the numerical results with the experimental ones, and then it is used to investigate the effect of meso-structure on the macro behavior of concrete. The shear strength of concrete under different pressures is also involved in this study, which could provide a reference for the macroscopic simulation of concrete component under shear force.

Shear lag effect in steel-concrete composite beam in hogging moment

  • Luo, Da;Zhang, Zhongwen;Li, Bing
    • Steel and Composite Structures
    • /
    • 제31권1호
    • /
    • pp.27-41
    • /
    • 2019
  • Shear lag effect can be an important phenomenon to consider in design of the steel-concrete composite beams. Researchers have found that the effect can be strongly related with the moment distribution, the stiffness and the ductility of the composite beams. For continuous composite beams expected to sustain hogging moment, the shear lag effect can be more distinct as cracking of the concrete slab reduces its shear stiffness. Despite its influences on behaviour of the steel-concrete composite beams, a method for calculating the shear lag effect in steel-concrete composite beams sustaining hogging moment is still not available. Shear lag effect in steel-concrete composite beams sustaining hogging moment is investigated in this paper. A method was proposed specifically for predicting the effect in the cracked part of the steel-concrete composite beam. The method is validated against available experimental data. At last, FE studies are conducted for steel-concrete composite beams with different design parameters, loading conditions and boundary conditions to further investigate the shear lag effect and compare with the proposed method.

프리캐스트 콘크리트 부유식 구조물의 모듈 접합부 강도 (Strength of Joint in Floating Structures Constructed with Precast Concrete Modules)

  • 양인환;김경철
    • 한국항해항만학회지
    • /
    • 제36권3호
    • /
    • pp.197-204
    • /
    • 2012
  • 프리캐스트 콘크리트 모듈 단위로 시공되는 플로팅 구조물의 거동은 콘크리트 모듈 접합부의 거동과 밀접한 연관성을 갖는다. 극한하중조건에서의 플로팅 구조물의 구조적 거동을 정확히 예측하기 위해서 모듈 접합부의 구조거동 실험연구를 수행하였다. 모듈 접합부 전단키의 전단거동, 전단강도 및 균열 패턴을 파악하였다. 실험결과는 전단키의 경사각도가 증가함에 따라 전단강도가 증가하는 것을 나타낸다. 또한, 구속응력이 증가함에 따라 전단키의 전단강도가 증가한다. 실험결과와 AASHTO 제안식에 의한 예측값을 비교하였으며, AASHTO 제안식은 실험값을 과소평가하고 있다.

격자형 강합성 바닥판 이음부의 휨거동에 관한 실험적 연구 (An Experimental Study on Bending Behaviour of Steel Grid Composite Deck Joint)

  • 신현섭;이진형;박기태
    • 한국구조물진단유지관리공학회 논문집
    • /
    • 제16권5호
    • /
    • pp.68-77
    • /
    • 2012
  • 기존의 격자형 강합성 바닥판 이음부 상세는 후크형태의 철근 겹침이음 및 채움 콘크리트로 구성된다. 본 연구에서는 콘크리트 전단키와 고장력볼트로 구성된 이음부 형식에 대해 콘크리트 전단키 보강 유무를 실험변수로 휨성능평가 실험을 하였고, 그 결과를 기존 철근겹침 이음부의 휨성능과 비교 평가함으로써 기계적 연결방법에 의한 이음부 형식의 적용 가능성을 검토하였다. 실험결과의 비교 분석에 의하면, 기계적 연결방식에 의한 이음부의 최대내력이 약 30% ~ 60% 정도 더 큰 것으로 나타나서 강도 측면에서 더 우수함을 확인하였다. 모멘트-곡률 관계로부터 구한 휨강성을 비교해 보면, 철근겹침 이음부의 경우 초기 거동에서는 비교적 더 우수한 거동을 보였으나, 콘크리트 균열파괴가 발생한 이후에는 다소 급격한 단면성능의 감소를 보였다. 한편, 콘크리트 전단키의 강판 보강 유무에 따른 변수 분석 결과에 의하면 강판 보강구조가 최대내력 향상 및 휨강성 증가에 효과적임을 확인할 수 있었다.