• Title/Summary/Keyword: concrete recycling

Search Result 587, Processing Time 0.025 seconds

Study on the development of environment-friendly tetrapod using recycled aggregate (순환골재를 이용한 환경 친화형 호안 블록제품의 개발에 관한 연구)

  • Park Do-Kyong;Lee Myung-Kue;Yang Keek-Young
    • Journal of the Korea Institute of Building Construction
    • /
    • v.6 no.2 s.20
    • /
    • pp.73-79
    • /
    • 2006
  • The purpose of this study is to enhance the development of construction waste-recycling technologies and its economical efficiency by developing environment-friendly tetrapod, precast concrete, where recycled aggregate is used in order to promote recycling of waste concrete. The results of concrete mechanic characteristics experiments by the circulation coarse aggregate-replacement ratio are as the following. The circulation aggregate is lower and higher than natural aggregate in specific gravity and absorption ratio, respectively so that in case of mix proportioning, unit volume increases, while unit aggregate amount decreases. From the result, sufficient experiments of physical characteristics of circulation aggregate are required to get proper mix proportioning. When circulation aggregate-replacement ratio increases, compressive strength tends to decrease comprehensively, but 50% of replacement ratio is good enough to use. When circulation coarse aggregate's replacement ratio is 0%, drying shrinkage, which causes cracks in concrete and deteriorates durability, shows the minimum length change and the higher the ratio, the larger the length change. Thus. when using circulation coarse aggregate, drying shrinkage should be fairly examined. In freezing-and-thawing resistance, weight loss tends to comprehensively increase its loss at the circulation aggregate-mixed site. And the examination of surface aggregate-omission ratio is further needed and dynamic elastic modulus and durability factor(DF) require more study as well. In order to use circulation aggregate to tetrapod, a clear standard for strength should be first prepared and at the same time, more study about durability is needed.

Properties of Concrete using Surface Treatment Recycled Aggregates and Steel Fibers (강섬유보강(鋼纖維補强) 표면처리(表面處理) 순환골재(循環骨材)콘크리트의 특성(特性))

  • Bae, Ju-Seong;Kim, Nam-Wook
    • Resources Recycling
    • /
    • v.20 no.1
    • /
    • pp.46-53
    • /
    • 2011
  • The recycled aggregate produced from the waste concrete have the disadvantages in the quality for the natural aggregate. Therefore, in order to reuse the recycled aggregate widely it is a previous subject to improve the quality of recycled aggregate. We deduced the more effective surface treatment method using the colloidal silica solution for quality improvement of recycled aggregate. This study aimed to verify the influences of the deduced surface treatment method and the reinforcement of steel fiber to the properties of concrete. For this object, we inquired into the results of the strengths and the flexural failure tests for the five kinds of concrete specimens.

Characteristic of retentive concrete using bottom ash and metakaolin (바텀애시 및 메타카올린을 사용(使用)한 보수성(保水性)콘크리트의 특성(特性))

  • Bae, Ju-Seong;Jeong, Houi-Gab;Kim, Nam-Wook
    • Resources Recycling
    • /
    • v.20 no.6
    • /
    • pp.19-27
    • /
    • 2011
  • This study was to draw a retentive concrete pavement that can reduce urban heat island which has become intensified according to the increase of buildings and paved roads. It used bottom ash, an industrial by-product that has retentive effect, as a replacement of fine aggregate. Meanwhile, in order to improve the decline of dynamic performance caused by bottom ash replacement, we manufactured specimen that metakaolin was added and we studied the characteristics of durable, ecological and retentive concrete through various experiments.

Optimum Mix Proportion for Recycling Waste Foundry Sand as Fine Aggregate in Concrete

  • Moon, Han-Young;Song, Yong-Kyu;Park, Jae-Jin;Park, Yun-Wang;Kim, Ki-Hyung
    • Proceedings of the IEEK Conference
    • /
    • 2001.10a
    • /
    • pp.576-580
    • /
    • 2001
  • The amount of the waste foundry sand(WFS) produced in Korea is over 700,000 ton per year, but most WFS buries itself and only 5~6% or total WFS is recycled in the way or mixing as fine aggregate for construction materials. A bY-product, WFS produced from a foundry may affect our environmental contamination if it is discharged without proper waste disposal in Korea. Therefore in this study, we performed the fundamental research about specific gravity, absorption, grading curve, finesse modulus of WFS, different aggregates and the flow and the compressive strength of mortar with WFS replaced as fine aggregate, the workability and compressive strength of concrete with WFS as fine aggregate aimed at the specified strength of 270 kgf/$\textrm{cm}^2$, and then optimum mix proportion of concrete was determined

  • PDF

An Experimental Study of the Recycled Cement Manufacturing Method for Improving the Material Quality (재생시멘트의 품질향상을 위한 제조방법에 관한 연구)

  • Oh, Sang-Gyun
    • Journal of the Korea Institute of Building Construction
    • /
    • v.4 no.2
    • /
    • pp.143-149
    • /
    • 2004
  • The recycle of domestic waste concrete is, however, still in an early stage, and it has been only partially being used for the road fillers. As a counter-plan of activating recycled concrete, we have confirmed the hydration possibility of the waste concrete powder from the experiment on recycling the aggregate powder since 2000. Though that study, we have known that the strength is increasing when the baking time is longer, and baking temperature maintain in $700^{\circ}C$. Also, the quality is lowered because of the fine aggregate powder which has a bad influence on flowability & compression strength by adhesion of mortar on the aggregate face. Therefore, mortar and interfacial separation of aggregate are large in proper quality for concrete recycling is expected that affect. The purpose of this study is to investigate effective aggregate separation and to determine the most suitable production method controlling the duration of baking time for recycled cement from the compressive strength, X-ray diffraction and ingredient analysis test.

Mechanical Properties of Hot Mix Crumb Rubber Modified Asphalt Concrete Using Waste Tire (폐타이어 재활용 아스팔트 콘크리트의 역학적 특성)

  • 김낙석;이우열
    • Resources Recycling
    • /
    • v.7 no.2
    • /
    • pp.53-58
    • /
    • 1998
  • Wheel tracking and ravelling tests were conducted on the hot mix crumb rubber modified asphalt concrete usmg waste tire t to evaluate the mechanical prope$\pi$ies in comparison with conventional asphalt concrete. According to the test results, the m modified product, lias superior to the conventional one by 50% in the resistance of permanent deformation and by 15% in the m resistance of dmability. The experimental results should recommend thut the waste tir$\xi$ is positively recycled for asphak concrete.

  • PDF

Evaluation of Characteristic Improvement of Waste-Polyethylene Asphalt Concrete (폐폴리에틸렌 필름 재활용 아스팔트 콘크리트의 특성 분석)

  • Kim, Kwang-Woo;Li, Xing-Fan;Jeong, Seung-Ho;Lee, Soon-Jae;Lee, Gi-Ho
    • International Journal of Highway Engineering
    • /
    • v.4 no.1 s.11
    • /
    • pp.161-170
    • /
    • 2002
  • This study is a fundamental research for recycling waste polyethylene film(WPF) in asphalt concrete for roadway pavement. The objective of this study is to develop technology of making waste polyethylene asphalt mixture and evaluate properties of the asphalt concrete containing WPF. Asphalt concrete for surface course of pavement was produced through an appropriate mix-design using dense-graded and gap-graded aggregates. Marshall mix design, indirect tensile strength test, wheel tracking test and tensile fatigue test were performed. Test result showed that some WPF asphalt mixtures had a high tensile property and good resistances against rutting and fatigue cracking, compared with normal asphalt mixture.

  • PDF

Separation of Recycled Aggregates from Waste Concrete by Heavy Medium Separation (폐콘크리트에서 중액선별(重液選別)을 이용한 재생골재(再生骨材)의 선별(選別))

  • Lee, Myung-Gyu;Kwon, Ki-O;Gayabazar, Ganbileg;Kang, Heon-Chan
    • Resources Recycling
    • /
    • v.16 no.5
    • /
    • pp.13-18
    • /
    • 2007
  • The recycled aggregates produced from waste concrete by crushing and granularity adjusting processes only can't be used for structural aggregates because they display low density and high abrasion rate by including lots of mortar and cement paste. However, the recycled aggregates include a lot of aggregates for concrete. Using the heavy medium separation method that is one of the specific gravity separation methods, about 45% of the waste concrete could be converted to the recycled aggregates.

A Study on Rational Evaluation of Recycled Aggregates Extracted from Demolished Concrete (폐콘크리트로부터 재생된 골재의 합리적 평가에 관한 연구)

  • 송하원;변근주;하주형
    • Journal of the Korea Concrete Institute
    • /
    • v.12 no.5
    • /
    • pp.3-12
    • /
    • 2000
  • Recently, the amount of disposed construction materials like demolished concrete is growing fast and the shortage of natural concrete aggregates is becoming serious. Therefore, recycling of aggregates extracted from the demolished concrete is getting important and use of the recycled aggregates for concrete has been seriously considered. However, the use of the recycled aggregates even for low performance concretes is very limited because there are few rational standard evaluation criteria for recycled aggregates which should be different from that for natural aggregates. In this study, rational evaluation criteria for the recycled aggregates are proposed for their use as concrete aggregates. The study also shows that the performance for both the recycled aggregates and the recycled concrete manufactured with the recycled aggregates can be evaluated effectively according to water absorption ratio of recycled aggregates.

An Experimental Study on the Chemical Soundness of Recycled Aggregate Concrete (재생골재 콘크리트의 화학안정성에 관한 실험적 연구)

  • 김무한;김규용;박선규;이정율
    • Journal of the Korea Concrete Institute
    • /
    • v.11 no.4
    • /
    • pp.13-20
    • /
    • 1999
  • Recently, the study for practical construction application no recycled aggregate concrete is actively being proceeded, on the purpose of technical development for recycling on the construction waste concrete occurred at the time of destruction of building construction by the rapid increase of building wastes and exhaustion of natural aggregates. But, the durability of investigation with all sorts of fluidity and engineering property for application recycled aggregate concrete to practical construction must be done at the same time. Especially, because of the real condition for chemical attack of concrete construction by the acid rain, acidification of soil, deepening of air pollution and dirty water etc. being come to the fore a serious problem, the study on the chemical soundness of concrete durability must be accompanied. This study is composed as: I series: Analysis for chemical soundness of aggregates. II series: Analysis for chemical soundness of natural and recycled aggregate concrete against $Na_2$$SO_4$ solution in drying and wet curing condition ($at20~80^{\circ}C$).