• Title/Summary/Keyword: concrete property

Search Result 952, Processing Time 0.027 seconds

Study on Mechanical property of lightweight aggregate concrete with coated-lightweight aggregate (코팅 경량골재를 활용한 경량골재 콘크리트의 물리적 특성 연구)

  • Kim, Se-Hwan;Kim, Sang-Heon;Seo, Chee-Ho
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2011.05a
    • /
    • pp.87-88
    • /
    • 2011
  • High absorptance of lightweight aggregate make a hard product, work, quality management ect. for making low absorptance property, lightweight aggregate is coated by an organic matter and that way remarkably showed to decrease the absorptance by pre-study. but first, we would need a check to fit into the concrete which both fresh concrete and hardened concrete. In this study, mechanical property change of coated lightweight aggregate concrete was analysed by compared experiment with coated lightweight aggregate concrete and non-coated aggregate concrete.

  • PDF

A Property of Porous Concrete applied by Recycled Cement and using Recycled Aggregates Made of EPS Waste (재생시멘트와 폐 EPS 재생골재를 사용한 포러스 콘크리트 물성)

  • Kim Sung-Su;Park Cha-Won;Ahn Jae-Cheol;Kang Byeung-Hee
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • v.y2004m10
    • /
    • pp.59-63
    • /
    • 2004
  • In recent days. it is necessary to find environment-friendly way of diposing industrial waste and reclying system. So this study will analyze the property of Porous concrete improved by concrete waste powder and recycled lightweight aggregate and then suggest the ways of reclying. The method deals with experimenting unit weight of capacity. thermal conductivity, compression and ultrasonic pluse velocity. Considering the relation between ultrasonic pluse velocity and unit weight & thermal conductivity through the graph. the result of relation between ultrasonic pluse velocity and unit weight & thermal conductivity on the graph expessed their high interaction shown as direct proportion on the graph. Recycled Porous concrete merits lightweight and adiabatic. Therefore. we will expect that the current using ALC and Recycled Porous concrete has be similar thermal conductivity.

  • PDF

A Research for the Property of the Concrete Using Functional Materials (기능성 재료를 사용한 콘크리트의 특성에 관한 연구)

  • Lee, Jong-Chan
    • Journal of the Korean Recycled Construction Resources Institute
    • /
    • v.2 no.2
    • /
    • pp.93-100
    • /
    • 2006
  • Building materials are trending toward environmental materials nowadays and the market share of those is growing. So those researches and developments for environmental property are proceeding now. The main properties of environmental products are far infrared emission, negative ion emission, electro magnetic wave shielding, and anti fungus, these products are used with shape of mortar, and spray on the finish material. But There are not much researches for the concrete, main material in construction field, with those functional properties. So in this research we evaluated slump, compressive strength and air content as basic properties for concrete using functional materials of sericite, wood pattern sand stone, carbon black and nanometric silver solution and functional properties like far infrared emission, negative ion emission, electro magnetic wave shielding, and anti fungus. The results were as follows. The most useful material in the functional materials was carbon black. Sericite and nanometric silver solution had a little effect on functional property, so it was difficult to apply to concrete, and wood pattern sand stone had a high functional property but low compressive strength, can be applied to a factory product. Anti fungus of the concrete using nanometric silver solution was not clear but if those specimens were aged in $CO_2$ gas for a long time it might apparent.

  • PDF

Estimation of Bituminous Concrete Property Based on Molecular Size Distribution of Asphalt Cement (아스팔트 시멘트의 분자립도 분포특성에 따른 아스팔트의 성질분석)

  • 김광우;연규석
    • Magazine of the Korea Concrete Institute
    • /
    • v.3 no.1
    • /
    • pp.71-78
    • /
    • 1991
  • Moleclar size distribution of three AC-20 asphalt cements were observed using high pressure - gel permeation chromatograph (HP-GPC). Bituminous concrete specimens were made using the asphalt cements and one aggre¬gate in laboratory to measure mechanical properties, tensile strength CIS) and resilient modulusCM,J. in dry and wet conditons. Results of mechanical property tests and profile of molecular size distribution of asphalt cements were analyzed to evaluate the relatonship of mechanical property with chromatogram. Regression analy¬sis showed a strong correlation between a mechanical property and sliced percent areas of chromatogram. Mathematical prediction models were developed based on the regression analysis. It was shown that characteris¬tics of asphalt cement chromatogram could be successfully used for estimation of selected mechanical property of asphalt concrete .

A Experimental Study on the Elastic Modulus Property of High Strength Concrete Using the Various Meterials (사용 재료별 고강도콘크리트의 탄성계수 특성에 관한 실험적 연구)

  • Kim, Dong-Seuk;Ha, Jae-Dam;Kim, Ki-Soo;Choi, Long
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 1998.10a
    • /
    • pp.245-250
    • /
    • 1998
  • The Elastic modulus depends on the elastic property of composition materials, the gravity of aggregate, the bond strength of binder, the usage and quantity of admixture, curing and measuring method, etc. Accordingly, the aim of this study, by manufacturing concrete of practical high strength range(600~ 1000kg/$\textrm{cm}^2$) with the specific cement and mineral admixtures, is to compare elastic modulus with the existing equations and also to estimate elastic property of use materials. As a result, it could be confirmed that the existing equations which were proposed by the ACI 363, CEB-FIP Code, and New-RC have a tendency to the overestimation in general. However, it could be confirmed that the KCI-96 and Norwegian NS 3473 equations are closed to measuring results, and that the elastic modulus property have a different tendency due to types of cements.

  • PDF

Material property of fiber reinforced concrete according to the fiber blended ratio (섬유 혼입 비율에 따른 섬유보강 콘크리트의 재료특성)

  • Park Choon Gun;Kim Nam Hol;Lee Jong Pil;Kim Hag Youn
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2004.05a
    • /
    • pp.632-635
    • /
    • 2004
  • In this paper, material property of fiber reinforced concrete(FRC) according to the steel fiber, glass fiber and carbon fiber blended ratio. The fiber reinforced concretes are increased mechanical strength, because the fibers are dispersed with randomly direction and disturb crack progression in concretes. Adhesive fracture is occurred slowly at interface between fiber and concrete, and the fracture energy is absorbed due to softening phenomenon.

  • PDF

An Experimental Study on the Engineering Property of Concrete With Replacement Ratio of Crushed Sand (부순모래 대체율에 따른 콘크리트의 공학적 특성에 관한 실험적 연구)

  • Park Jong Ho;Lee Eui Bae;Choi Se Jin;Lee Seong Yeun;Kim Gyu Yong;Kim Moo Han
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2005.11a
    • /
    • pp.451-454
    • /
    • 2005
  • Recently, Trouble of sand supply is occurred according to exhaustion of natural sand resources. therefore, various measures are proposed for solution of trouble of sand supply and crushed sand among measures is used as one of most universal measures. but because crushed sand have poor particle shape and plenty of makes micro particle, the quality of concrete using crushed sand deteriorated. Therefore, this study evaluated engineering property of concrete with replacement ratio of crushed sand and applied evaluation result to fundamental data for quality control of concrete using crushed sand. The result of this study have shown that quality of concrete using crushed sand independently is poor against general concrete. but, the concrete mixing crushed sand with general sand can be similar in workability of concrete used general sand and increase compressive strength of concrete as against concrete using general sand.

  • PDF

A study on the Experiment of Basic Property of Concrete Using Recycled Fine Aggregate (재생잔골재를 사용한 콘크리트의 기초물성에 관한 실험적 연구)

  • 김재성;권인표;강석표;홍성윤
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2003.11a
    • /
    • pp.116-119
    • /
    • 2003
  • The Natural aggregate will be faced with serious shortage problem within 10 years due to the great amount of consumption in domestic. In order to reserve our natural resources, the construction waste has to be reused as an alternative material. Especially, It is more imminent to find alternative material in case of fine aggregate. This paper presents and experimental results on the fundamental property of concrete using recycled fine aggregate. As a result, it was found that the property of concrete using recycled fine aggregate substituted for 25% of a natural sand was similar in that of crushed fine aggregate.

  • PDF

An Experimental Study on the Control Property of PlasticShrinkage Crack for CFRD Face Slab Concrere (CFRD 차부벽콘크리트의 수성수축균열 제어특성에 관한 실험적 연구)

  • 김완영;최세진;원종필
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2000.04a
    • /
    • pp.118-121
    • /
    • 2000
  • CFRD (Concrete Faced Rockfill Dam) face slab concrete has a much capability to occur crack due to drying shrinkage, hydration heat and bas compaction etc. Because of crack of concrete induce structural problem and decrease durability of concrete, it is need to reduce crack of concrete. This is an experimental study to analyze the Control Property of Plastic Shrinkage Crack for CFRD face slab concrete. For this purpose, it was investigated and analyzed the engineering properties of plain concrete and using admixtures (polypropylene fiber, fly-ash) according to test result As the result, it was found that crack width and area of concrete using admixtures less than of plain concrete.

  • PDF

Meso-Scale Approach for Prediction of Mechanical Property and Degradation of Concrete

  • Ueda, Tamon
    • Corrosion Science and Technology
    • /
    • v.3 no.3
    • /
    • pp.87-97
    • /
    • 2004
  • This paper presents a new approach with meso scale structure models to express mechanical property, such as stress - strain relationships, of concrete. This approach is successful to represent both uniaxial tension and uniaxial compression stress - strain relationship, which is in macro scale. The meso scale approach is also applied to predict degraded mechanical properties of frost-damaged concrete. The degradation of mechanical properties with frost-damaged concrete was carefully observed. Strength and stiffness in both tension and compression decrease with freezing and thawing cycles (FTC), while stress-free crack opening in tension softening increases. First attempt shows that the numerical simulation can express the experimentally observed degradation by introducing changes in the meso scale structure in concrete, which are assumed based on observed damages in the concrete subjected to FTC. At the end applicability of the meso scale approach to prediction of the degradation by combined effects of salt attack and FTC is discussed. It is shown that clarification of effects of frost damage in concrete on corrosion progress and on crack development in the damaged cover concrete due to corrosion is one of the issues for which the meso scale approach is useful.