• Title/Summary/Keyword: concrete properties

Search Result 5,773, Processing Time 0.029 seconds

Influence of coarse aggregate properties on specific fracture energy of steel fiber reinforced self compacting concrete

  • Raja Rajeshwari, B.;Sivakumar, M.V.N.
    • Advances in concrete construction
    • /
    • v.9 no.2
    • /
    • pp.173-181
    • /
    • 2020
  • Fracture properties of concrete depend on the mix proportions of the ingredients, specimen shape and size, type of testing method used for the evaluation of fracture properties. Aggregates play a key role for changes in the fracture behaviour of concrete as they constitute about 60-75 % of the total volume of the concrete. The present study deals with the effect of size and quantity of coarse aggregate on the fracture behaviour of steel fibre reinforced self compacting concrete (SFRSCC). Lower coarse aggregate and higher fine aggregate content in SCC results in the stronger interfacial transition zone and a weaker stiffness of concrete compared to vibrated concrete. As the fracture properties depend on the aggregates quantity and size particularly in SCC, three nominal sizes (20 mm, 16 mm and 12.5 mm) and three coarse to fine aggregate proportions (50-50, 45-55, 40-60) were chosen as parameters. Wedge Split Test (WST), a stable test method was adopted to arrive the requisite properties. Specimens without and with guide notch were investigated. The results are indicative of increase in fracture energy with increase in coarse aggregate size and quantity. The splitting force was maximum for specimens with 12.5 mm size which is associated with a brittle failure in the pre-ultimate stage followed by a ductile failure due to the presence of steel fibres in the post-peak stage.

The Experimental Study on the Influence of Relation between Cement Paste and Aggregate Volume to Effect the High Folwing and Engineering Properties of High Flowing Concrete (고유동콘크리트의 유동특성 및 공학적 특성에 미치는 시멘트페이스트용적 및 골재용적과의 관계에 관한 실험적 연구)

  • 김규용;최희용;강희관;김무한
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 1996.10a
    • /
    • pp.301-307
    • /
    • 1996
  • High flowing concrete has been made using a combination of much amount cementitious materials and addition of SP agents, so that it makes possible to high flowing properties of fresh concrete. In the fluid mechanical and rheological point of view, high flowing concrete is affected on the relation between cement paste and aggregate of volume. In this experimental study, it is measured high flowing concrete of slump-flow about 65$\pm$5cm according to 0.54~0.80 of volume ratio and to analysed the properties of high flowing concrete in fresh and hardened concrete. It is the aim of this study to consider the affection of high flowing properties accoring to cement paste to aggregate ratio of volume on the combination of concrete.

  • PDF

A homogenization approach for uncertainty quantification of deflection in reinforced concrete beams considering microstructural variability

  • Kim, Jung J.;Fan, Tai;Reda Taha, Mahmoud M.
    • Structural Engineering and Mechanics
    • /
    • v.38 no.4
    • /
    • pp.503-516
    • /
    • 2011
  • Uncertainty in concrete properties, including concrete modulus of elasticity and modulus of rupture, are predicted by developing a microstructural homogenization model. The homogenization model is developed by analyzing a concrete representative volume element (RVE) using the finite element (FE) method. The concrete RVE considers concrete as a three phase composite material including: cement paste, aggregate and interfacial transition zone (ITZ). The homogenization model allows for considering two sources of variability in concrete, randomly dispersed aggregates in the concrete matrix and uncertain mechanical properties of composite phases of concrete. Using the proposed homogenization technique, the uncertainty in concrete modulus of elasticity and modulus of rupture (described by numerical cumulative probability density function) are determined. Deflection uncertainty of reinforced concrete (RC) beams, propagated from uncertainties in concrete properties, is quantified using Monte Carlo (MC) simulation. Cracked plane frame analysis is used to account for tension stiffening in concrete. Concrete homogenization enables a unique opportunity to bridge the gap between concrete materials and structural modeling, which is necessary for realistic serviceability prediction.

The Effects PPF Fiber on Concrete Properties (PPF 섬유가 콘크리트의 물성에 미치는 영향)

  • 한만엽
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 1993.10a
    • /
    • pp.150-155
    • /
    • 1993
  • The use of polypropylene fibers in concrete has been widely advertised by the fiber manufacturers. However, the behavior of concrete containing plastic fibers has not been fully understood. The effects of fiber on concrete have been forcused on shrinkage crack control mainly from field observation, and the mechanism and the side effect of fiber such as workability reduction have been neglicted. In this paper, the effect of fiber on workability and shrinkage properties have been studied. The addition of fiber significantly reduce workability and requires additional water to maintain the workability, which causes adversal effects on concrete properties.

  • PDF

Physical Properties of Planting Concrete Using Recycled Aggregate (재생골재를 이용한 식재용 콘크리트의 물리적 특성)

  • 이상태;신동안;황정하;김진선;오선교;한천구
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2000.04a
    • /
    • pp.93-96
    • /
    • 2000
  • In this paper, physical properties of planting concrete using Recycled aggregates made with demolished concrete and construction wastes are investigated. According to the test results. It shows that recycled aggregates made with demolished concrete and construction wastes have low physical properties compared with crushed stone. But, recycled aggregates made with construction wastes shows better performance in absorption ratio, unit weight and thermal conductivity than crushed stone. According it is thought that they are available for being applied to planting concrete considering the sides of efficient recycling of construction wastes and saving the manufacturing cost.

  • PDF

Effect of spatial variability of concrete materials on the uncertain thermodynamic properties of shaft lining structure

  • Wang, Tao;Li, Shuai;Pei, Xiangjun;Yang, Yafan;Zhu, Bin;Zhou, Guoqing
    • Structural Engineering and Mechanics
    • /
    • v.81 no.2
    • /
    • pp.205-217
    • /
    • 2022
  • The thermodynamic properties of shaft lining concrete (SLC) are important evidence for the design and construction, and the spatial variability of concrete materials can directly affect the stochastic thermal analysis of the concrete structures. In this work, an array of field experiments of the concrete materials are carried out, and the statistical characteristics of thermophysical parameters of SLC are obtained. The coefficient of variation (COV) and scale of fluctuation (SOF) of uncertain thermophysical parameters are estimated. A three-dimensional (3-D) stochastic thermal model of concrete materials with heat conduction and hydration heat is proposed, and the uncertain thermodynamic properties of SLC are computed by the self-compiled program. Model validation with the experimental and numerical temperatures is also presented. According to the relationship between autocorrelation functions distance (ACD) and SOF for the five theoretical autocorrelation functions (ACFs), the effects of the ACF, COV and ACD of concrete materials on the uncertain thermodynamic properties of SLC are analyzed. The results show that the spatial variability of concrete materials is subsistent. The average temperatures and standard deviation (SD) of inner SLC are the lowest while the outer SLC is the highest. The effects of five 3-D ACFs of concrete materials on uncertain thermodynamic properties of SLC are insignificant. The larger the COV of concrete materials is, the larger the SD of SLC will be. On the contrary, the longer the ACD of concrete materials is, the smaller the SD of SLC will be. The SD of temperature of SLC increases first and then decreases. This study can provide a reliable reference for the thermodynamic properties of SLC considering spatial variability of concrete materials.

Evaluation of early age mechanical properties of concrete in real structure

  • Wang, Jiachun;Yan, Peiyu
    • Computers and Concrete
    • /
    • v.12 no.1
    • /
    • pp.53-64
    • /
    • 2013
  • The curing temperature is known to influence the rate of mechanical properties development of early age concrete. In realistic sites the temperature of concrete is not isothermal $20^{\circ}C$, so the paper measured adiabatic temperature increases of four different concretes to understand heat emission during hydration at early age. The temperature-matching curing schedule in accordance with adiabatic temperature increase is adopted to simulate the situation in real massive concrete. The specimens under temperature-matching curing are subjected to realistic temperature for first few days as well as adiabatic condition. The mechanical properties including compressive strength, splitting strength and modulus of elasticity of concretes cured under both temperature-matching curing and isothermal $20^{\circ}C$ curing are investigated. The results denote that comparing temperature-matching curing with isothermal $20^{\circ}C$ curing, the early age concretes mechanical properties are obviously improved, but the later mechanical properties of concretes with pure Portland and containing silica fume are decreased a little and still increased for concretes containing fly ash and slag. On this basement using an equivalent age approach evaluates mechanical properties of early age concrete in real structures, the model parameters are defined by the compressive strength test, and can predict the compressive strength, splitting strength and elasticity modulus through measuring or calculating by finite element method the concreted temperature at early age, and the method is valid, which is applied in a concrete wall for evaluation of crack risking.

Evaluation of Quality Properties of Concrete according to Mixing Proportion of Finex Water Granulated Slag Fine Aggregate (파이넥스 수쇄 슬래그 잔골재의 혼합률에 따른 콘크리트의 품질특성 평가)

  • Choi, Yun-Wang;Cho, Bong-Suk;Oh, Sung-Rok;Park, Man-Seok
    • Journal of the Korean Recycled Construction Resources Institute
    • /
    • v.2 no.2
    • /
    • pp.145-151
    • /
    • 2014
  • This paper evaluated the quality properties of Finex Water Granulated Slag fine aggregate as part of a study to recycle the Finex Water Granulated Slag generated in korea, and examined the availability as fine aggregate for concrete by comparing properties (properties of fresh concrete, mechanical properties of hardened concrete) of concrete using Finex Water Granulated Slag fine aggregate with properties of concrete using river sand as fine aggregate. From the results of this study, it was found that quality properties of concrete using finex water granulated slag as fine aggregate and concrete using river sand as fine aggregate are equivalent level.

Fundamental Properties of Porous Concrete by Aggregate Size

  • Kim, Moo-Han;Kim, Gyu-Yong;Baik, Yong-Kwan;Kim, Jae-Hwan;Cho, Bong-Suk
    • International Journal of Concrete Structures and Materials
    • /
    • v.18 no.2E
    • /
    • pp.117-124
    • /
    • 2006
  • Porous concrete has been used recently for the purpose of decreasing the load on the earth environment. It consists solely of cement, water and coarse aggregate of uni form size. Its fundamental properties are considerably affected by the physical properties of aggregate because the aggregate is the main material for the most part in its mix proportion. Because of this reason, this study carried out an investigation of the influence of the size and type of aggregate on the fundamental properties of porous concrete. It is shown that the fundamental properties of porous concrete was seldom affected by the size of aggregate except for the case of using $2.5{\sim}5mm$ aggregate but varied significantly by the type of aggregate. In particular, the compressive strength of porous concrete using $2.5{\sim}5mm$ aggregate was much higher than that using other aggregate, and its void ratio and coefficient of permeability was lower. Moreover, the capacity to maintain the permeability of porous concrete was found to vary by the size and type of aggregate. Of particular notice was that it decreased greatly when $2.5{\sim}5mm$ aggregate was used. Unlike ordinary concrete, porous concrete exhibited very high dynamic modulus of elasticity at early age and continued to increase but slowly afterwards.

Modeling the mechanical properties of rubberized concrete using machine learning methods

  • Miladirad, Kaveh;Golafshani, Emadaldin Mohammadi;Safehian, Majid;Sarkar, Alireza
    • Computers and Concrete
    • /
    • v.28 no.6
    • /
    • pp.567-583
    • /
    • 2021
  • The use of waste materials as a binder or aggregate in the concrete mixture is a great step towards sustainability in the construction industry. Waste rubber (WR) can be used as coarse and fine aggregates in concrete and improves the crack resistance, impact resistance, and fatigue life of the produced concrete. However, the mechanical properties of rubberized concrete degrade significantly by replacing the natural aggregate with WR. To have accurate estimations of the mechanical properties of rubberized concrete, two machine learning methods consisting of artificial neural network (ANN) and neuro-fuzzy system (NFS) were served in this study. To do this, a comprehensive dataset was collected from reliable literature, and two scenarios were addressed for the selection of input variables. In the first scenario, the critical ratios of the rubberized concrete and the concrete age were considered as the input variables. In contrast, the mechanical properties of concrete without WR and the percentage of aggregate volume replaced by WR were assumed as the input variables in the second scenario. The results show that the first scenario models outperform the models proposed by the second scenario. Moreover, the developed ANN models are more reliable than the proposed NFS models in most cases.