Browse > Article
http://dx.doi.org/10.12989/cac.2021.28.6.567

Modeling the mechanical properties of rubberized concrete using machine learning methods  

Miladirad, Kaveh (Department of Civil Engineering, Science and Research Branch, Islamic Azad University)
Golafshani, Emadaldin Mohammadi (Department of Civil Engineering, Monash University)
Safehian, Majid (Department of Civil Engineering, Science and Research Branch, Islamic Azad University)
Sarkar, Alireza (Department of Civil Engineering, Science and Research Branch, Islamic Azad University)
Publication Information
Computers and Concrete / v.28, no.6, 2021 , pp. 567-583 More about this Journal
Abstract
The use of waste materials as a binder or aggregate in the concrete mixture is a great step towards sustainability in the construction industry. Waste rubber (WR) can be used as coarse and fine aggregates in concrete and improves the crack resistance, impact resistance, and fatigue life of the produced concrete. However, the mechanical properties of rubberized concrete degrade significantly by replacing the natural aggregate with WR. To have accurate estimations of the mechanical properties of rubberized concrete, two machine learning methods consisting of artificial neural network (ANN) and neuro-fuzzy system (NFS) were served in this study. To do this, a comprehensive dataset was collected from reliable literature, and two scenarios were addressed for the selection of input variables. In the first scenario, the critical ratios of the rubberized concrete and the concrete age were considered as the input variables. In contrast, the mechanical properties of concrete without WR and the percentage of aggregate volume replaced by WR were assumed as the input variables in the second scenario. The results show that the first scenario models outperform the models proposed by the second scenario. Moreover, the developed ANN models are more reliable than the proposed NFS models in most cases.
Keywords
artificial neural network; mechanical properties; neuro-fuzzy system; rubberized concrete; waste rubber;
Citations & Related Records
연도 인용수 순위
  • Reference
1 Vahidi, E.K., Malekabadi, M.M., Rezaei, A., Roshani, M.M. and Roshani, G.H. (2017), "Modelling of mechanical properties of roller compacted concrete containing RHA using ANFIS", Comput. Concrete, 19(4), 435-442. https://doi.org/10.12989/cac.2017.19.4.435.   DOI
2 Wong, S.F. and Ting, S.K. (2009), "Use of recycled rubber tires in normal-and high-strength concretes", ACI Mater. J., 106(4), 325. https://doi.org/10.14359/56652.   DOI
3 Gesoglu, M. and Guneyisi, E. (2007), "Strength development and chloride penetration in rubberized concretes with and without silica fume", Mater. Struct., 40(9), 953-964. https://doi.org/10.1617/s11527-007-9279-0.   DOI
4 Gesoglu, M., Giineyisi, E. and Ozturan, T. (2005), "Use of recycled tyre rubber as aggregates in silica fume concrete", Achieving Sustainability in Construction: Proceedings of the International Conference Held at the University of Dundee, Scotland, UK, July.
5 Gesoglu, M., Guneyisi, E., O zturan, T. and O zbay, E. (2010), "Modeling the mechanical properties of rubberized concretes by neural network and genetic programming", Mater. Struct., 43(1), 31-45. https://doi.org/10.1617/s11527-009-9468-0.   DOI
6 Golafshani, E.M. and Behnood, A. (2018), "Application of soft computing methods for predicting the elastic modulus of recycled aggregate concrete", J. Clean. Prod., 176, 1163-1176. https://doi.org/10.1016/j.jclepro.2017.11.186.   DOI
7 Golafshani, E.M. and Behnood, A. (2019), "Estimating the optimal mix design of silica fume concrete using biogeography-based programming", Cement Concrete Compos., 96, 95-105. https://doi.org/10.1016/j.cemconcomp.2018.11.005.   DOI
8 Golafshani, E.M. and Pazouki, G. (2018), "Predicting the compressive strength of self-compacting concrete containing fly ash using a hybrid artificial intelligence method", Comput. Concrete, 22(4), 419-437. https://doi.org/10.12989/cac.2018.22.4.419.   DOI
9 Grdic, Z., Toplicic-Curcic, G., Ristic, N., Grdic, D. and Mitkovic, P. (2014), "Hydro-abrasive resistance and mechanical properties of rubberized concrete", Gradevinar, 66(1), 11-20. https://doi.org/10.14256/jce.910.2013.   DOI
10 Gregori, A., Castoro, C., Marano, G.C. and Greco, R. (2019), "Strength reduction factor of concrete with recycled rubber aggregates from tires", J. Mater. Civil Eng., 31(8), 04019146. https://doi.org/10.1061/(ASCE)MT.1943-5533.0002783.   DOI
11 Pelisser, F., Zavarise, N., Longo, T.A. and Bernardin, A.M. (2011), "Concrete made with recycled tire rubber: effect of alkaline activation and silica fume addition", J. Clean. Prod., 19(6-7), 757-763. https://doi.org/10.1016/j.jclepro.2010.11.014.   DOI
12 Xie, Y., Su, X.R., Wang, H.X., Luo, D.M. and Zhou, Y.L. (2019), "Experimental analysis of the toughness mechanism of rubber concrete", IOP Confer. Ser. Mater. Sci. Eng., 504(1), 012041. https://doi.org/10.1088/1757-899X/504/1/012041.   DOI
13 Hadzima-Nyarko, M., Nyarko, E.K., Ademovic, N., Milicevic, I. and Kalman Sipos, T. (2019), "Modelling the influence of waste rubber on compressive strength of concrete by artificial neural networks", Mater., 12(4), 561. https://doi.org/10.3390/ma12040561.   DOI
14 Jalal, M., Arabali, P., Grasley, Z., Bullard, J.W. and Jalal, H. (2020), "Behavior assessment, regression analysis and support vector machine (SVM) modeling of waste tire rubberized concrete", J. Clean. Prod., 273, 122960. https://doi.org/10.1016/j.jclepro.2020.122960.   DOI
15 Ozbay, E., Lachemi, M. and Sevim, U.K. (2011), "Compressive strength, abrasion resistance and energy absorption capacity of rubberized concretes with and without slag", Mater. Struct., 44(7), 1297-1307. https://doi.org/10.1617/s11527-010-9701-x.   DOI
16 Jokar, F., Khorram, M., Karimi, G. and Hataf, N. (2019), "Experimental investigation of mechanical properties of crumbed rubber concrete containing natural zeolite", Constr. Build. Mater., 208, 651-658. https://doi.org/10.1016/j.conbuildmat.2019.03.063.   DOI
17 Khatib, Z.K. and Bayomy, F.M. (1999), "Rubberized Portland cement concrete", J. Mater. Civil Eng., 11(3), 206-213. https://doi.org/10.1061/(ASCE)0899-1561(1999)11:3(206).   DOI
18 Li, Y., Zhang, X., Wang, R. and Lei, Y. (2019), "Performance enhancement of rubberised concrete via surface modification of rubber: A review", Constr. Build. Mater., 227, 116691. https://doi.org/10.1016/j.conbuildmat.2019.116691.   DOI
19 Mohammadi, I., Khabbaz, H. and Vessalas, K. (2014), "In-depth assessment of Crumb Rubber Concrete (CRC) prepared by water-soaking treatment method for rigid pavements", Constr. Build. Mater., 71, 456-471. https://doi.org/10.1016/j.conbuildmat.2014.08.085.   DOI
20 Nielsen, M.P. and Hoang, L.C. (2016), Limit Analysis and Concrete Plasticity, Third Edition.
21 Hiremath, P.N., Jayakesh, K., Rai, R., Raghavendra, N.S. and Yaragal, S.C. (2019), "Experimental investigation on utilization of waste shredded rubber tire as a replacement to fine aggregate in concrete", Sustain. Constr. Build. Mater., 561-569. https://doi.org/10.1007/978-981-13-3317-0_49.   DOI
22 Golafshani, E.M., Behnood, A. and Arashpour, M. (2020), "Predicting the compressive strength of normal and high-performance concretes using ANN and ANFIS hybridized with grey wolf optimizer", Constr. Build. Mater., 232, 117266. https://doi.org/10.1016/j.conbuildmat.2019.117266.   DOI
23 Abd-Elaal, E.S., Araby, S., Mills, J.E., Youssf, O., Roychand, R., Ma, X. and Gravina, R.J. (2019), "Novel approach to improve crumb rubber concrete strength using thermal treatment", Constr. Build. Mater., 229, 116901. https://doi.org/10.1016/j.conbuildmat.2019.116901.   DOI
24 Yaman, M.A., Abd Elaty, M. and Taman, M. (2017), "Predicting the ingredients of self compacting concrete using artificial neural network", Alexandria Eng. J., 56(4), 523-532. https://doi.org/10.1016/j.aej.2017.04.007.   DOI
25 Youssf, O., ElGawady, M.A., Mills, J.E. and Ma, X. (2014), "An experimental investigation of crumb rubber concrete confined by fibre reinforced polymer tubes", Constr. Build. Mater., 53, 522-532. https://doi.org/10.1016/j.conbuildmat.2013.12.007.   DOI
26 Abdollahzadeh, A., Masoudnia, R. and Aghababaei, S. (2011), "Predict strength of rubberized concrete using atrificial neural network", WSEAS Transac. Comput., 10(2), 31-40.
27 Diab, A.M., Elyamany, H.E., Abd Elmoaty, M. and Shalan, A.H. (2014), "Prediction of concrete compressive strength due to long term sulfate attack using neural network", Alexandria Eng. J., 53(3), 627-642. https://doi.org/10.1016/j.aej.2014.04.002.   DOI
28 Eldin, N.N. and Senouci, A.B. (1993), "Rubber-tire particles as concrete aggregate", J. Mater. Civil Eng., 5(4), 478-496. https://doi.org/10.1061/(ASCE)0899-1561(1993)5:4(478).   DOI
29 Feng, W., Liu, F., Yang, F., Li, L., Jing, L., Chen, B. and Yuan, B. (2019), "Experimental study on the effect of strain rates on the dynamic flexural properties of rubber concrete", Constr. Build. Mater., 224, 408-419. https://doi.org/10.1016/j.conbuildmat.2019.07.084.   DOI
30 Feng, W., Liu, F., Yang, F., Li, L. and Jing, L. (2018), "Experimental study on dynamic split tensile properties of rubber concrete", Constr. Build. Mater., 165, 675-687. https://doi.org/10.1016/j.conbuildmat.2018.01.073.   DOI
31 Holmes, N., Browne, A. and Montague, C. (2014), "Acoustic properties of concrete panels with crumb rubber as a fine aggregate replacement", Constr. Build. Mater., 73, 195-204. https://doi.org/10.1016/j.conbuildmat.2014.09.107.   DOI
32 Jalal, M., Grasley, Z., Gurganus, C. and Bullard, J.W. (2020), "Experimental investigation and comparative machine-learning prediction of strength behavior of optimized recycled rubber concrete", Constr. Build. Mater., 256, 119478. https://doi.org/10.1016/j.conbuildmat.2020.119478.   DOI
33 Carroll, J.C. and Helminger, N. (2016), "Fresh and hardened properties of fiber-reinforced rubber concrete", J. Mater. Civil Eng., 28(7), 04016027. https://doi.org/10.1061/(ASCE)MT.1943-5533.0001541.   DOI
34 Siddika, A., Al Mamun, M.A., Alyousef, R., Amran, Y.M., Aslani, F. and Alabduljabbar, H. (2019), "Properties and utilizations of waste tire rubber in concrete: A review", Constr. Build. Mater., 224, 711-731. https://doi.org/10.1016/j.conbuildmat.2019.07.108.   DOI
35 Sukontasukkul, P. and Tiamlom, K. (2012), "Expansion under water and drying shrinkage of rubberized concrete mixed with crumb rubber with different size", Constr. Build. Mater., 29, 520-526. https://doi.org/10.1016/j.conbuildmat.2011.07.032.   DOI
36 Ashteyat, A.M. and Ismeik, M. (2018), "Predicting residual compressive strength of self-compacted concrete under various temperatures and relative humidity conditions by artificial neural networks", Comput. Concrete, 21(1), 47-54. https://doi.org/10.12989/cac.2018.21.1.047.   DOI
37 Takagi, T. and Sugeno, M. (1985), "Fuzzy identification of systems and its applications to modeling and control", IEEE Transac. Syst. Man Cybernetics, SMC-15(1), 116-132.   DOI
38 Topcu, I.B. and Saridemir, M. (2008), "Prediction of rubberized concrete properties using artificial neural network and fuzzy logic", Constr. Build. Mater., 22(4), 532-540. https://doi.org/10.1016/j.conbuildmat.2006.11.007.   DOI
39 Guneyisi, E., Gesoglu, M. and O zturan, T. (2004), "Properties of rubberized concretes containing silica fume", Cement Concrete Res., 34(12), 2309-2317. https://doi.org/10.1016/j.cemconres.2004.04.005.   DOI
40 Batayneh, M.K., Marie, I. and Asi, I. (2008), "Promoting the use of crumb rubber concrete in developing countries", Waste Manag., 28(11), 2171-2176. https://doi.org/10.1016/j.wasman.2007.09.035.   DOI
41 Fattuhi, N.I. and Clark, L.A. (1996), "Cement-based materials containing shredded scrap truck tyre rubber", Constr. Build. Mater., 10(4), 229-236. https://doi.org/10.1016/0950-0618(96)00004-9.   DOI
42 Gesoglu, M., Guneyisi, E., Hansu, O., Ipek, S. and Asaad, D.S. (2015), "Influence of waste rubber utilization on the fracture and steel-concrete bond strength properties of concrete", Constr. Build. Mater., 101, 1113-1121. https://doi.org/10.1016/j.conbuildmat.2015.10.030.   DOI
43 Golafshani, E.M. and Behnood, A. (2018), "Application of soft computing methods for predicting the elastic modulus of recycled aggregate concrete", J. Clean. Prod., 176, 1163-1176. https://doi.org/10.1016/j.jclepro.2017.11.186.   DOI
44 Jalal, M., Grasley, Z., Nassir, N. and Jalal, H. (2020), "Strength and dynamic elasticity modulus of rubberized concrete designed with ANFIS modeling and ultrasonic technique", Constr. Build. Mater., 240, 117920. https://doi.org/10.1016/j.conbuildmat.2019.117920.   DOI
45 Toma, I.O., Taranu, N., Banu, O.M., Budescu, M., Mihai, P. and Taran, R.G. (2015), "The effect of the aggregate replacement by waste tyre rubber crumbs on the mechanical properties of concrete", Revista Romana Mater. Roma. J. Mater., 45(4), 394-401.
46 Saha, P., Prasad, M.L.V. and RathishKumar, P. (2017), "Predicting strength of SCC using artificial neural network and multivariable regression analysis", Comput. Concrete, 20(1), 31-38. https://doi.org/10.12989/cac.2017.20.1.031.   DOI
47 Thomas, B.S. and Gupta, R.C. (2015), "Long term behaviour of cement concrete containing discarded tire rubber", J. Clean. Prod., 102, 78-87. https://doi.org/10.1016/j.jclepro.2015.04.072.   DOI
48 Thomas, B.S. and Gupta, R.C. (2016), "A comprehensive review on the applications of waste tire rubber in cement concrete", Renew. Sustain. Ener. Rev., 54, 1323-1333. https://doi.org/10.1016/j.rser.2015.10.092.   DOI
49 Thomas, B.S. and Gupta, R.C. (2016), "Properties of high strength concrete containing scrap tire rubber", J. Clean. Prod., 113, 86-92. https://doi.org/10.1016/j.jclepro.2015.11.019.   DOI
50 Thomas, B.S., Gupta, R.C., Kalla, P. and Cseteneyi, L. (2014), "Strength, abrasion and permeation characteristics of cement concrete containing discarded rubber fine aggregates", Constr. Build. Mater., 59, 204-212. https://doi.org/10.1016/j.conbuildmat.2014.01.074.   DOI
51 Guneyisi, E., Gesoglu, M. and O zturan, T. (2004), "Properties of rubberized concretes containing silica fume", Cement Concrete Res., 34(12), 2309-2317. https://doi.org/10.1016/j.cemconres.2004.04.005.   DOI
52 Bompa, D.V., Elghazouli, A.Y., Xu, B., Stafford, P.J. and Ruiz-Teran, A.M. (2017), "Experimental assessment and constitutive modelling of rubberised concrete materials", Constr. Build. Mater., 137, 246-260. https://doi.org/10.1016/j.conbuildmat.2017.01.086.   DOI
53 Mendis, A.S., Al-Deen, S. and Ashraf, M. (2017), "Behaviour of similar strength crumbed rubber concrete (CRC) mixes with different mix proportions", Constr. Build. Mater., 137, 354-366. https://doi.org/10.1016/j.conbuildmat.2017.01.125.   DOI
54 Reda Taha, M.M., El-Dieb, A.S., Abd El-Wahab, M.A. and Abdel-Hameed, M.E. (2008), "Mechanical, fracture, and microstructural investigations of rubber concrete", J. Mater. Civil Eng., 20(10), 640-649. https://doi.org/10.1061/(ASCE)0899-1561(2008)20:10(640).   DOI
55 Pham, T.M., Elchalakani, M., Hao, H., Lai, J., Ameduri, S. and Tran, T.M. (2019), "Durability characteristics of lightweight rubberized concrete", Constr. Build. Mater., 224, 584-599. https://doi.org/10.1016/j.conbuildmat.2019.07.048.   DOI
56 Samarakoon, S.S.M., Ruben, P., Pedersen, J.W. and Evangelista, L. (2019), "Mechanical performance of concrete made of steel fibers from tire waste", Case Stud. Constr. Mater., 11, e00259. https://doi.org/10.1016/j.cscm.2019.e00259.   DOI
57 Sgobba, S., Borsa, M., Molfetta, M. and Marano, G.C. (2015), "Mechanical performance and medium-term degradation of rubberised concrete", Constr. Build. Mater., 98, 820-831. https://doi.org/10.1016/j.conbuildmat.2015.07.095.   DOI
58 Siddique, R. and Naik, T.R. (2004), "Properties of concrete containing scrap-tire rubber-an overview", Waste Manag., 24(6), 563-569. https://doi.org/10.1016/j.wasman.2004.01.006.   DOI
59 Gupta, T., Patel, K.A., Siddique, S., Sharma, R.K. and Chaudhary, S. (2019), "Prediction of mechanical properties of rubberised concrete exposed to elevated temperature using ANN", Meas., 147, 106870. https://doi.org/10.1016/j.measurement.2019.106870.   DOI
60 Hagan, M.T. and Menhaj, M.B. (1994), "Training feedforward networks with the Marquardt algorithm", IEEE Trans. Neural Network., 5(6), 989-993. https://doi.org/10.1109/72.329697.   DOI
61 Balaha, M.M., Badawy, A.A.M. and Hashish, M. (2007), "Effect of using ground waste tire rubber as fine aggregate on the behaviour of concrete mixes", Ind. J. Eng. Mater. Sci., 14(6), 427-435.
62 Zaleska, M., Pavlik, Z., Citek, D., Jankovsky, O. and Pavlikova, M. (2019), "Eco-friendly concrete with scrap-tyre-rubber-based aggregate-Properties and thermal stability", Constr. Build. Mater., 225, 709-722. https://doi.org/10.1016/j.conbuildmat.2019.07.168.   DOI
63 Al-Tayeb, M.M., Bakar, B.A., Ismail, H. and Akil, H.M. (2013), "Effect of partial replacement of sand by recycled fine crumb rubber on the performance of hybrid rubberized-normal concrete under impact load: experiment and simulation", J. Clean. Prod., 59, 284-289. https://doi.org/10.1016/j.jclepro.2013.04.026.   DOI
64 Bala, A., Sehgal, V.K. and Saini, B. (2014), "Effect of fly ash and waste rubber on properties of concrete composite", Concrete Res. Lett., 5(3), 842-857.
65 Behnood, A. and Golafshani, E.M. (2018), "Predicting the compressive strength of silica fume concrete using hybrid artificial neural network with multi-objective grey wolves", J. Clean. Prod., 202, 54-64. https://doi.org/10.1016/j.jclepro.2018.08.065.   DOI
66 Li, H.L., Xu, Y., Chen, P.Y., Ge, J.J. and Wu, F. (2019), "Impact energy consumption of high-volume rubber concrete with silica fume", Adv. Civil Eng., 2019, 1728762. https://doi.org/10.1155/2019/1728762.   DOI
67 Kandiri, A., Golafshani, E.M. and Behnood, A. (2020), "Estimation of the compressive strength of concretes containing ground granulated blast furnace slag using hybridized multi-objective ANN and salp swarm algorithm", Constr. Build. Mater., 248, 118676. https://doi.org/https://doi.org/10.1016/j.conbuildmat.2020.118676.   DOI
68 Khaloo, A.R., Dehestani, M. and Rahmatabadi, P. (2008), "Mechanical properties of concrete containing a high volume of tire-rubber particles", Waste Manag., 28(12), 2472-2482. https://doi.org/10.1016/j.wasman.2008.01.015.   DOI
69 Li, G., Garrick, G., Eggers, J., Abadie, C., Stubblefield, M.A. and Pang, S.S. (2004), "Waste tire fiber modified concrete", Compos. Part B Eng., 35(4), 305-312. https://doi.org/10.1016/j.compositesb.2004.01.002.   DOI
70 Flores-Medina, D., Medina, N.F. and Hernandez-Olivares, F. (2014), "Static mechanical properties of waste rests of recycled rubber and high quality recycled rubber from crumbed tyres used as aggregate in dry consistency concretes", Mater. Struct., 47(7), 1185-1193. https://doi.org/10.1617/s11527-013-0121-6.   DOI
71 Mazloom, M., Tajar, S.F. and Mahboubi, F. (2020), "Long-term quality control of self-compacting semi-lightweight concrete using short-term compressive strength and combinatorial artificial neural networks", Comput. Concrete, 25(5), 401-409. https://doi.org/10.12989/cac.2020.25.5.401.   DOI
72 Mohammed, B.S. and Azmi, N.J. (2014), "Strength reduction factors for structural rubbercrete", Frontier. Struct. Civil Eng., 8(3), 270-281. https://doi.org/10.1007/s11709-014-0265-7.   DOI
73 Nguyen, T.N., Yu, Y., Li, J., Gowripalan, N. and Sirivivatnanon, V. (2019), "Elastic modulus of ASR-affected concrete: An evaluation using artificial neural network", Comput. Concrete., 24(6), 541-553. https://doi.org/10.12989/cac.2019.24.6.541.   DOI
74 Noaman, A.T., Bakar, B.A., Akil, H.M. and Alani, A.H. (2017), "Fracture characteristics of plain and steel fibre reinforced rubberized concrete", Constr. Build. Mater., 152, 414-423. https://doi.org/10.1016/j.conbuildmat.2017.06.127.   DOI
75 Youssf, O., ElGawady, M.A., Mills, J.E. and Ma, X. (2017), "Analytical modeling of the main characteristics of crumb rubber concrete", ACI Spec. Publ., 314, 1-18.
76 Stallings, K.A., Durham, S.A. and Chorzepa, M.G. (2019), "Effect of cement content and recycled rubber particle size on the performance of rubber-modified concrete", Int. J. Sustain. Eng., 12(3), 189-200. https://doi.org/10.1080/19397038.2018.1505971.   DOI