• 제목/요약/키워드: concrete modelling

검색결과 340건 처리시간 0.021초

Analysis of rigid and semi-rigid steel-concrete composite joints under monotonic loading - Part I: Finite element modelling and validation

  • Amadio, C.;Fragiacomo, M.
    • Steel and Composite Structures
    • /
    • 제3권5호
    • /
    • pp.349-369
    • /
    • 2003
  • The paper concerns the modelling of rigid and semi-rigid steel-concrete composite joints under monotonic loading through use of the Abaqus program, a widespread finite element code. By comparing numerical and experimental results obtained on cruciform tests, it is shown that the proposed modelling allows a good fit of the global joint response in terms of moment-rotation law. Even the local response in terms of stresses and strains is adequately predicted. Hence, this numerical approach may represent a useful tool for attaining a better understanding of experimental results. It may also be used to perform parametric analyses and to calibrate simplified mechanical models for practical applications.

각형강관과 H형강보 접합부의 유한요소 모델링에 관한 연구 (An Investigation into the Finite element Modelling on connections of H-beam to S.H.S Column)

  • 이종석;변우정;이광훈;강석봉;박순규
    • 한국전산구조공학회:학술대회논문집
    • /
    • 한국전산구조공학회 1995년도 가을 학술발표회 논문집
    • /
    • pp.68-75
    • /
    • 1995
  • In recent year, column member is used for square hollow section(5.H.5) and beam member is used for H-section. But 5.H.5 column has vulnerability because of low flexural stiffness between column and beam connection joints. To reinforce this vulnerability, 5.H.5 column filled with concrete and concrete slab connection compounded with H-beam is developed in many ways. In this paper, modelling of predicting behavior of various types of connections is studied using finite element method. k order to simulate the actual behavior, a three-dimensional modelling is used. A simple efficient contact algorithm with a new gap element is employed to simulate the interaction between 5.H.5 column and concrete, The modelling result$ are compared with the experimental results.

  • PDF

전산해석에 의한 온도응력 및 온도균열 검토 (A thermal stress and crack study by computer modelling)

  • 문수동;이상호;문한영
    • 한국콘크리트학회:학술대회논문집
    • /
    • 한국콘크리트학회 2002년도 가을 학술발표회 논문집
    • /
    • pp.375-380
    • /
    • 2002
  • Tong-young LNG tank is a LNG storage tank of 140,000 kl, and it is composed of Bottom Slab(Annular, Center), Outer Wall, Ring Beam and Roof. Generally, when concrete temperature arise, the complex thermal stress of inner and outer part can cause serious thermal crack and damage at structure. So in this paper, for the control of this thermal crack, we did the concrete mix design with the base of fly-ash 30% substitute at binder, and through the computer modelling at Bottom Slab(Annular, Center), Outer Wall, Ring Beam and Roof, we studied the probability of thermal crack by thermal crack index.

  • PDF

Concrete structures under combined mechanical and environmental actions: Modelling of durability and reliability

  • Vorechovska, Dita;Somodikova, Martina;Podrouzek, Jan;Lehky, David;Teply, Bretislav
    • Computers and Concrete
    • /
    • 제20권1호
    • /
    • pp.99-110
    • /
    • 2017
  • Service life assessments which do not include the synergy between mechanical and environmental loading are neglecting a factor that can have a significant impact on structural safety and durability assessment. The degradation of concrete structure is a result of the combined effect of environmental and mechanical factors. In order to make service life design realistic it is necessary to consider both of these factors acting simultaneously. This paper deals with the advanced modelling of concrete carbonation and chloride ingress into concrete using stochastic 1D and 2D models. Widely accepted models incorporated into the new fib Model Code 2010 are extended to include factors that reflect the coupled effects of mechanical and environmental loads on the durability and reliability of reinforced concrete structures. An example of cooling tower degradation by carbonation and an example of a bended reinforced concrete beam kept for several years in salt fog are numerically studied to show the capability of the stochastic approach. The modelled degradation measures are compared with experimental results, leading to good agreement.

Numerical and statistical analysis about displacements in reinforced concrete beams using damage mechanics

  • Pituba, Jose J. De C.;Delalibera, Rodrigo G.;Rodrigues, Fabio S.
    • Computers and Concrete
    • /
    • 제10권3호
    • /
    • pp.307-330
    • /
    • 2012
  • This work intends to contribute for the improvement of the procedure suggested by Brazilian Technical Code that takes into account the cracked concrete stiffness in the estimative of the displacement of reinforced concrete beams submitted to service loads. A damage constitutive model accounting for induced anisotropy, plastic deformations and bimodular elastic response is used in order to simulate the concrete behaviour, while an elastoplastic behaviour is admitted for the reinforcement. The constitutive models were implemented in a program for bars structures analysis with layered finite elements. Initially, the damage model is briefly presented as well as the parametric identification of the materials that have been used in the reinforced concrete beams. After that, beams with different geometries and reinforcement area are analyzed and a statistical method (ANOVA) is employed in order to identify the main variables in the problem. Soon after, the same procedure is used with another resistance of concrete, where the compression strength is changed. The numerical responses are compared with the ones obtained by Brazilian Technical Code and experimental tests in order to validate the use of the damage model. Finally, some remarks are discussed based on responses presented in this work.

Numerical modelling of circular reinforced concrete columns confined with GFRP spirals using fracture-plastic model

  • Muhammad Saad Ifrahim;Abdul Jabbar Sangi;Shuaib H. Ahmad
    • Computers and Concrete
    • /
    • 제31권6호
    • /
    • pp.527-536
    • /
    • 2023
  • Fiber Reinforced Polymer (FRP) bar has emerged as a viable and sustainable replacement to steel in reinforced concrete (RC) under severe corrosive environment. The behavior of concrete columns reinforced with FRP bars, spirals, and hoops is an ongoing area of research. In this study, 3D nonlinear numerical modelling of circular concrete columns reinforced with Glass Fiber Reinforced Polymer (GFRP) bars and transversely confined with GFRP spirals were conducted using fracture-plastic model. The numerical models and experimental results are found to be in good agreement. The effectiveness of confinement was accessed through von-mises stresses, and it was found that the stresses in the concrete's core are higher with a 30 mm pitch (46 MPa) compared to a 60 mm pitch (36 MPa). The validated models are used to conduct parametric studies. In terms of axial load carrying capacity and member ductility, the effect of concrete strength, spiral pitch, and longitudinal reinforcement ratio are thoroughly investigated. The confinement effect and member ductility of a GFRP RC column increases as the spiral pitch decreases. It is also found that the confinement effect and member ductility decreased with increase in strength of concrete.

Force-deformation behaviour modelling of cracked reinforced concrete by EXCEL spreadsheets

  • Lam, Nelson;Wilson, John;Lumantarna, Elisa
    • Computers and Concrete
    • /
    • 제8권1호
    • /
    • pp.43-57
    • /
    • 2011
  • Force-deformation modelling of cracked reinforced concrete is essential for a displacement-based seismic assessment of structures and can be achieved by fibre-element analysis of the cross-section of the major lateral resisting elements. The non-linear moment curvature relationship obtained from fibre-element analysis takes into account the significant effects of axial pre-compression and contributions by the longitudinal reinforcement. Whilst some specialised analysis packages possess the capability of incorporating fibre-elements into the modelling (e.g., RESPONSE 2000), implementation of the analysis on EXCEL is illustrated in this paper. The outcome of the analysis is the moment-curvature relationship of the wall cross-section, curvature at yield and at damage control limit states specified by the user. Few software platforms can compete with EXCEL in terms of its transparencies, versatility and familiarity to the computer users. The program has the capability of handling arbitrary cross-sections that are without an axis of symmetry. Application of the program is illustrated with examples of typical cross-sections of structural walls. The calculated limiting curvature for the considered cross-sections were used to construct displacement profiles up the height of the wall for comparison with the seismically induced displacement demand.

Modelling of tension-stiffening in bending RC elements based on equivalent stiffness of the rebar

  • Torres, Lluis;Barris, Cristina;Kaklauskas, Gintaris;Gribniak, Viktor
    • Structural Engineering and Mechanics
    • /
    • 제53권5호
    • /
    • pp.997-1016
    • /
    • 2015
  • The contribution of tensioned concrete between cracks (tension-stiffening) cannot be ignored when analysing deformation of reinforced concrete elements. The tension-stiffening effect is crucial when it comes to adequately estimating the load-deformation response of steel reinforced concrete and the more recently appeared fibre reinforced polymer (FRP) reinforced concrete. This paper presents a unified methodology for numerical modelling of the tension-stiffening effect in steel as well as FRP reinforced flexural members using the concept of equivalent deformation modulus and the smeared crack approach to obtain a modified stress-strain relation of the reinforcement. A closed-form solution for the equivalent secant modulus of deformation of the tensioned reinforcement is proposed for rectangular sections taking the Eurocode 2 curvature prediction technique as the reference. Using equations based on general principles of structural mechanics, the main influencing parameters are obtained. It is found that the ratio between the equivalent stiffness and the initial stiffness basically depends on the product of the modular ratio and reinforcement ratio ($n{\rho}$), the effective-to-total depth ratio (d/h), and the level of loading. The proposed methodology is adequate for numerical modelling of tension-stiffening for different FRP and steel reinforcement, under both service and ultimate conditions. Comparison of the predicted and experimental data obtained by the authors indicates that the proposed methodology is capable to adequately model the tension-stiffening effect in beams reinforced with FRP or steel bars within wide range of loading.

콘크리트 전단 기여분 결정을 위한 균열묘사 방법 (Crack Modelling to Determine Concrete Contribution to Shear Resistance)

  • 조순호
    • 한국콘크리트학회:학술대회논문집
    • /
    • 한국콘크리트학회 2003년도 봄 학술발표회 논문집
    • /
    • pp.872-877
    • /
    • 2003
  • The fixed-angle based modified compression field theory (MCFT) was developed to include the slip deformation across the crack, thereby allowing for the non-coincident directions of the principal strain and stress. To investigate the significance of crack modelling on the analysis, a series of tests on beams without transverse reinforcement was predicted by both rotating- and fixed-angle crack models within the frame of the MCFT. The results predicted by the fixed-angle MCFT were comparable to those by the rotating-angle MCFT when the initial crack angle of 45deg. and the related friction law are used.

  • PDF

Performance of structural-concrete members under sequential loading and exhibiting points of inflection

  • Jelic, I.;Pavlovic, M.N.;Kotsovos, M.D.
    • Computers and Concrete
    • /
    • 제1권1호
    • /
    • pp.99-113
    • /
    • 2004
  • The article reports data on, and numerical modelling of, beams exhibiting points of inflection and subjected to sequential loading. Both tests and analysis point to inadequacies in current codes of practice. An alternative design methodology, which is strongly associated with the notion that contraflexure points should be designed as "internal supports", is shown to produce superior performance even though it requires significantly less secondary reinforcement than that advocated by codes.