• Title/Summary/Keyword: concrete mixture proportions

Search Result 49, Processing Time 0.036 seconds

Compressive strength and mixture proportions of self-compacting light weight concrete

  • Vakhshouri, Behnam;Nejadi, Shami
    • Computers and Concrete
    • /
    • v.19 no.5
    • /
    • pp.555-566
    • /
    • 2017
  • Recently some efforts have been performed to combine the advantages of light-weight and self-compacting concrete in one package called Light-Weight Self-Compacting Concrete (LWSCC). Accurate prediction of hardened properties from fresh state characteristics is vital in design of concrete structures. Considering the lack of references in mixture design of LWSCC, investigating the proper mixture components and their effects on mechanical properties of LWSCC can lead to a reliable basis for its application in construction industry. This study utilizes wide range of existing data of LWSCC mixtures to study the individual and combined effects of the components on the compressive strength. From sensitivity of compressive strength to the proportions and interaction of the components, two equations are proposed to estimate the LWSCC compressive strength. Predicted values of the equations are in good agreement with the experimental data. Application of lightweight aggregate to reduce the density of LWSCC may bring some mixing problems like segregation. Reaching a higher strength by lowered density is a challenging problem that is investigated as well. The results show that, the compressive strength can be improved by increasing the of mixture density of LWSCC, especially in the range of density under $2000Kg/m^3$.

Mix proportions of Concrete for Roller Compacted Concrete Dam Application (RCC 댐 콘크리트의 배합비 도출에 관한 연구)

  • 원종필;윤종환;황금식;장필성;김완영;정우성
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2003.05a
    • /
    • pp.997-1002
    • /
    • 2003
  • Roller-compacted concrete(RCC) dam is a new type that combines advantages of earthfill dam and concrete dam in construction, This method save cost due to their rapid method of construction. RCC is, used in RCC dams, no-slump concrete so it is different that measure method of consistency and mixture properties compare with conventional mass concrete, There are existing two major design method, which one used in USA the other used in Japan. The results obtained in this study would be useful in establishing mixture proportions for dam concrete for RCC dams by apply method of compound their merit.

  • PDF

A Study on the Prediction of Durability of Concrete Structures Subjected to Chloride Attack by Chloride Diffusion Model (염소이온의 확산모델에 의한 염해를 받는 콘크리트 구조물의 내구성 예측연구)

  • 오병환;장승엽;차수원;이명규
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 1997.04a
    • /
    • pp.254-260
    • /
    • 1997
  • Chloride-induced corrosion of reinforcement is one of the main factors which cause the deterioration of concrete structures. Durability and service lives of the concrete sturctures should be predicted in order to minimize the risk of corrosion of reinforcement. The objective of this study is to suggest the basis of analytical methods of predicting the corrosion threhold time of concrete structures. Based on the chemistry and physics of chloride ion transport and corrosion process, chloride intrusion with various exposure conditions, variability of diffusivity and transport of pore water in concrete are taken into consideration in applying finite element formulation to the predicion of corrosion threhold time. The effects of main factors on the prediction of chloride intrusion and corrosion threhold time are examined. In addition, after chloride diffusivities of several mixture proportions with different parameters are measured by chloride diffusion test, the exemplary anayses of corrosion threhold time of those mixture proportions are carried out.

  • PDF

A Study on the Properties of Noise Reduction on the Exposed Aggregate Concrete (골재노출 콘크리트의 소음 저감 특성에 대한 연구)

  • 문한영;하상욱;양은철
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2002.05a
    • /
    • pp.119-124
    • /
    • 2002
  • Generally, Portland cement concrete(PCC) pavements have the advantage of durability and superior surface friction when compared to most dense-graded asphalt. However, It is known that PCC pavements create more noise than asphaltic surfaces due to the noise from interaction of tire and pavement surface. Recently exposed aggregate concrete(EAC) pavement was sugested to reduce traffic noise. So in this paper, we considered several materials and mixture proportions for proper depth of exposed aggregate which was measured by the sand patching test, and then according to those relationships, we tried to find out dosage of retarding agents and optimum mixture proportions for expecting good effects to noise reduction. It were also evaluated sound level at every conditions of surface texture as like depth of aggregate exposed, profile peak, distance of aggregate and types of aggregate.

  • PDF

Concrete Mixture Design for RC Structures under Carbonation - Application of Genetic Algorithm Technique to Mixture Conditions (탄산화에 노출된 콘크리트 구조물의 배합설계에 대한 연구 - 유전자 알고리즘 적용성 평가)

  • Lee, Sung-Chil;Maria, Q. Feng;Kwon, Sung-Jun
    • Journal of the Korea Concrete Institute
    • /
    • v.22 no.3
    • /
    • pp.335-343
    • /
    • 2010
  • Steel corrosion in reinforced concrete (RC) structures is a critical problem to structural safety and many researches are being actively conducted on developing methods to maintain the required performance of the RC structures during their intended service lives. In this study, concrete mixture proportioning technique through genetic algorithm (GA) for RC structures under carbonation, which is considered to be serious in underground site and big cities, is investigated. For this, mixture proportions and diffusion coefficients of $CO_2$ from the previous researches were analyzed and fitness function for $CO_2$ diffusion coefficient was derived through regression analysis. This function based on the 12 experimental results consisted of 5 variables including water-cement ratio (W/C), cement content, sand percentage, coarse aggregate content per unit volume of concrete in unit, and relative humidity. Through genetic algorithm (GA) technique, simulated mixture proportions were proposed for 3 cases of verification and they showed reasonable results with less than relative error of 10%. Finally, assuming intended service life, different exposure conditions, design parameters, intended $CO_2$ diffusion coefficients, and cement contents were determined and related mixture proportions were simulated. This proposed technique is capable of suggesting reasonable mix proportions and can be modified based on experimental data which consider various mixing components like mineral admixtures.

Mixture-Proportioning Model for Low-CO2 Concrete Considering the Type and Addition Level of Supplementary Cementitious Materials (혼화재 종류 및 치환율을 고려한 저탄소 콘크리트 배합설계 모델)

  • Jung, Yeon-Back;Yang, Keun-Hyeok
    • Journal of the Korea Concrete Institute
    • /
    • v.27 no.4
    • /
    • pp.427-434
    • /
    • 2015
  • The objective of this study is to establish an rational mixture-proportioning procedure for low-$CO_2$ concrete using supplementary cementitious materials (SCMs) achieving the targeted $CO_2$ reduction ratio as well as the conventional requirements such as initial slump, air content, and 28-day compressive strength of concrete. To evaluate the effect of SCM level on the $CO_2$ emission and compressive strength of concrete, a total of 12537 data sets were compiled from the available literature and ready-mixed concrete plants. The amount of $CO_2$ emission of concrete was assessed under the system boundary from cradle to concrete production stage at a ready-mixed concrete plant. Based on regression analysis using the established database, simple equations were proposed to determine the mixture proportions of concrete such as the type and level of SCMs, water-to-binder ratio, and fine aggregate-to-total aggregate ratio. Furthermore, the $CO_2$ emissions for a given concrete mixture can be straightforwardly calculated using the proposed equations. Overall, the developed mixture-proportioning procedure is practically useful for determining the initial mixture proportions of low-$CO_2$ concrete in the ready-mixed concrete field.

Mix Proportions of Early-Strength Pavement Concrete Using Calcium Nitrate (질산칼슘 혼화재를 사용한 신속개방형 포장 콘크리트의 적정배합비 도출)

  • Won, Jong Pil;Lee, Si Won;Lee, Sang Woo;Park, Hae Geun
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.29 no.1A
    • /
    • pp.95-100
    • /
    • 2009
  • This study proposed mix proportions of early strength pavement concrete for large size area using calcium nitrate. Therefore, we used type III cement with calcium nitrate. Laboratory tests conducted to air content, slump loss test, setting time test, compressive strength test and flexural strength test. Our early strength pavement concrete mixture proportion proposed in this study for large size area attained the required compressive strength of 21 MPa and a flexural strength of 3.8 MPa, which allowed it to be opened to traffic within 8 hours. Based on test results, we suggested optimum mix proportions of early strength pavement concrete for large size area using calcium nitrate.

A Hydration Model for Blended Concrete utilizing Secondary Cementitious Powders (혼화재를 사용한 콘크리트의 수화모델)

  • Noh Jea Myoung;Byun Keun Joo;Song Ha-Won
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2004.05a
    • /
    • pp.140-143
    • /
    • 2004
  • Heat of hydration of concrete under different curing temperatures can be characterized with knowledge of the thermal activity, the heat rate at the reference temperature, and the total heat of hydration of the mixture. The so-called multi-component hydration model incorporates the effect of following variables: cement chemical composition, cement fineness, secondary cementitious powders, mixture proportions, and concrete properties. However, the model does not consider the use of silica fume as a secondary cementitious powder. Therefore, the model that quantifies the heat of hydration due to the use of silica fume is needed. In this thesis, the effects of silica fume on heat of hydration are evaluated and the influence on the heat of hydration are also quantified to be included in the model, so that the analysis using modified multi-component hydration model for silica fume concrete provides more accurate results than normal concrete.

  • PDF

Environmental Impact Assessment of Different Concrete Mixture Proportions according to Domestic Region and Season (국내의 지역 및 계절에 따른 콘크리트 배합별 환경영향평가)

  • Seo, Eun-A;Yang, Keun-Hyeok;Jung, Yeon-Back
    • Journal of the Korea Concrete Institute
    • /
    • v.26 no.3
    • /
    • pp.239-245
    • /
    • 2014
  • This study analyzed a comprehensive database including 6331 ready-mixed concrete plant mixtures to quantitatively assess the environmental impact of concrete under mixture proportions variable according to the domestic region and season. The environmental impact indicator includes global warming, photochemical oxidant creation, abiotic resource depletion, acidification, eutrophication and human toxicity, which are determined from categorization, characterization, normalization and weighting process based on Korea lifecycle inventories. The determined environmental impact indicator was also normalized by concrete compressive strength ($f_{ck}$), which is defined as impact index, to calculate the environmental impact per unit strength of 1 MPa. The most common compressive strength of concrete used in the country is estimated to be 24 MPa and 27 MPa. For $f_{ct}$ of 24 MPa, the lowest environmental impact indicator is observed in Ulsan, whereas the highest region is Gwangju and Daegu. This difference according to domestic region is primarily resulted from by the replacement of different supplementary cementitious materials. Furthermore, the impact index of concrete with $f_{ck}$ of 24 MPa is higher by approximately 5% at wintertime than at summertime and standard season. The impact index gradually decreases with the increase of $f_{ck}$ up to 35 MPa, beyond which it remains constant.

A Study on the Ecological Pavement using Road Compound (Road Compound 공법을 적용한 환경친화형 포장에 관한 연구)

  • 하상우;최연왕;신화철
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2003.05a
    • /
    • pp.59-64
    • /
    • 2003
  • As the economy of a country develops, the necessity for social overhead capital such as railroad, highway and other transportation infrastructures becomes an utmost issue as the volume of traffic increases. As the standard of living has been raised the needs for ecological road pavement also increase. As a matter of fact, the concrete and asphalt pavement have been constructed without considering the harmony with nature. The Road Compound pavement is constructed with local soils from optimum mixture proportions that did not contaminate the surroundings and represent the ecological pavement.

  • PDF