• 제목/요약/키워드: concrete mixing design

검색결과 185건 처리시간 0.021초

고품질 매스콘크리트 시공을 위한 배합설계 및 온도균열제어 시스템에 관한 연구 (A Study on the Mix Design and the Control System of Thermal Crack for High Quality Mass Concrete)

  • 김선구;이상수;원철;박상준;김동석
    • 한국건축시공학회지
    • /
    • 제1권2호
    • /
    • pp.174-178
    • /
    • 2001
  • This study was performed to control the thermal crack of the mat footing slab in the multi-purposed buildings. In this study, we executed the mixing design of concrete to satisfy the workability and the quality according to the site conditions. And, we evaluated quantitatively about the possibility of thermal crack by using hydration heat analysis system. Finally, we proposed the optimal mixing conditions, curing methods and curing period which all factors are considered. As a result, the optimal mixing conditions were : W/B 41%, unit binder 375kgf/$\textrm{m}^3$, FA replacement ratio 20%. Lowest thermal stress was 22.0kgf/$\textrm{cm}^2$ and at that time thermal crack index was over 1.5, when the coefficient of thermal conductivity was lowest among the curing conditions. And, the total curing time was estimated at 6.7 days according to curing steps.

  • PDF

반응표면 분석법을 이용한 천연마섬유보강 순환굵은골재 콘크리트의 성능 평가 (Performance Evaluation of Natural Jute Fiber Reinforced Recycled Coarse Aggregate Concrete Using Response Surface Method)

  • 전지홍;김황희;김춘수;유성열;박찬기
    • 한국농공학회논문집
    • /
    • 제56권4호
    • /
    • pp.21-28
    • /
    • 2014
  • In this study, evaluated ware the strength and durability of the vegetated water purification channel concrete to which recycled aggregates, hawang-toh and jute were applied. Box-Behnken method of response surface analysis in statistics was applied to the experimental design. Experimental variables are as follows, recycled coarse aggregates, hawang-toh, blast-furnace slag and jute fiber. In the experiment, conducted were the tests of compressive strength, chloride ion penetration, abrasion resistance and impact resistance the replacement rate effects of the recycled aggregates, blast-furnace slag and hwang-toh on the performance of vegetated water purification channel concrete were analyzed by using the response surface analysis method on the basis of the experimental results. In addition, an optimum mixing ratio of vegetated water purification channel concrete was determined by using the experimental results. The optimum mixing ratio was determined to be in 10.0% recycled coarse aggregates, 60.0% blast-furnace slag, 10.1% hwang-toh and 0.16% jute fiber. The compressive strength, chloride ion penetration, abrasion rate, and impact number of fracture test results of the optimum mixing ratio were 24.1 MPa, 999 coulombs, 10.30 g/mm3, and 20 number, respectively.

고로슬래그 미분말 혼입 콘크리트의 배합설계방법에 관한 연구 (Study on the Mixing Design Method of Concrete Using Finely Ground Granulated Furnace Blast Slag)

  • 신성우;이한승;한검욱;김정식;박귀성;강훈
    • 한국콘크리트학회:학술대회논문집
    • /
    • 한국콘크리트학회 1999년도 봄 학술발표회 논문집(I)
    • /
    • pp.625-630
    • /
    • 1999
  • This study was carried out to investigate quantitatively the relatonship between the water binder ratio and the concrete strength using finely ground granulated furnace blast slag to apply f 0.5% type admixture. The experimental parameters are water-binder ratio (40, 45, 50, 55, 60%) and slag contents(0, 10, 20, 30%). As a result, it can make that the water-binder ratio of concrete contented slag can be calculated by equation using relationship between compressive strength of concrete and water-binder ratio which is consisted of mixing strength and cement strength K.

  • PDF

고성능 콘크리트 배합 설계에서의 유전자 알고리즘의 적용 (Genetic Algorithm in Mix Proportioning of High -Performance Concrete)

  • 임철현;윤영수;이승훈;손유신
    • 한국콘크리트학회:학술대회논문집
    • /
    • 한국콘크리트학회 2002년도 봄 학술발표회 논문집
    • /
    • pp.551-556
    • /
    • 2002
  • High-performance concrete is defined as concrete that meets special combinations of performance and uniformity requirements that cannot always be achieved routinely using conventional constituents and normal mixing, placing, and curing practices. Ever since the term high-performance concrete was introduced into the industry, it had widely used in large-scale concrete construction that demands high-strength, high-flowability, and high-durability. To obtain such performances that cannot be obtained from conventional concrete and by the current method, a large number of trial mixes are required to select the desired combination of materials that meets special performance. In this paper, therefore, using genetic algorithm which is a global optimization technique modeled on biological evolutionary process-natural selection and natural genetics-and can be used to find a near optimal solution to a problem that may have many solutions, the new design method for high-performance concrete mixtures is suggested to reduce the number of trial mixtures with desired properties in the field test. Experimental and analytic investigations were carried out to develop the design method for high-performance concrete mixtures and to verify the proposed mix design.

  • PDF

고강도 콘크리트의 단위수량 신속 측정기법별 배합요인에 따른 성능 검토에 관한 연구 (A Study on the Investigation of Performance about Quick Measurement Technology of Unit Water Content at Mixing Factor of High Strength Concrete)

  • 윤섭;정영민;정용
    • 한국콘크리트학회:학술대회논문집
    • /
    • 한국콘크리트학회 2008년도 춘계 학술발표회 제20권1호
    • /
    • pp.745-748
    • /
    • 2008
  • On investigation about quick measurement technology of unit water at range of W/B=35% in high strength, the average error of the Di-electric constant moisture tester A has measured more than $23.0kg/m^3$ unit water content of design and the average error of the method of unit volume weigh was less than $-9.6kg/m^3$. The average error with mixing factor has influenced with a kind of sand, but had not influenced with unit water content of design. Therefore, it will be for introduce business decide require more than a study about cement, sand, superplasticizer, etc.

  • PDF

Efficient Optimum Design of Reinforced Concrete Structures using the Mixed-Discrete Optimization Method

  • Kim, Jong-Ok
    • 한국농공학회지
    • /
    • 제39권2호
    • /
    • pp.32-43
    • /
    • 1997
  • Abstract A series of permeability tests was performed on the mixtures with specific mixing rates of sand and bentonite using modified rigid-wall permeameter. Sand-bentonite mixtures were permeated by organics, ethanol and TCE. Permeability of bentonite with several mixing rates had a tendency to decrease up to initial one pore volume and permeability was thereafter converged to a constant value. When sand-bentonite mixtures was permeated by water, permeability was decreased at the beginning but it was thereafter converged to a constant. Among several mixing rates, permeability was greatly decreased at 15% of mixing rate. When sand-bentonite mixtures with 15% mixing rate was permeated by ethanol, permeability was about 10 times larger value than permeability of water. Peameability was shown greater values when permeated by TCE (TrichloroEthylene) followed by ethanol. Suitable mixing rate of sand-bentonite for a liner of waste landfills was detected.

철근 부식 예측 시스템의 개발에 관한 연구 (A Study on the Development of Steel Corrosion Prediction System)

  • 김도겸;박승범;이택우;이종석;이장화
    • 한국콘크리트학회:학술대회논문집
    • /
    • 한국콘크리트학회 1999년도 학회창립 10주년 기념 1999년도 가을 학술발표회 논문집
    • /
    • pp.743-746
    • /
    • 1999
  • One of the main deteriorating factors that affect the service life of concrete structures is the corrosion of reinforcement. The chlorides penetrate the concrete, destroy the passive layer surrounding the steel, and help initiate the steel corrosion. A Corrosion Prediction System(CPS) has been developed to assist the engineer in analyzing the service life of existing sea-shore structures and future concrete repairs by calculate the chloride diffusion in concrete. The CPS calculates mixing design, physical properties or recent chloride profiles. The CPS can be used to evaluate changes in concrete cover, chloride loads, and environmental conditions in different structural designs.

  • PDF

콘크리트용 표준물질(Standard Reference Materials)개발의 최적배합비율 결정을 위한 기초연구 (A Fundamental Study on the Determination of Optimal Mixing Ratio for Development of Standard Reference Materials for Concrete)

  • 이동규;최명성
    • 한국안전학회지
    • /
    • 제34권5호
    • /
    • pp.111-118
    • /
    • 2019
  • Recently, a variety of special concrete structures have been designed in domestic and overseas construction markets and more advanced construction technology is required. Therefore, it is necessary to secure quantitative construction technology. For this purpose, it is essential to develop a standard reference material having a constant flow performance and quality to evaluate quantitative performance. On the other hand, the flowability of the concrete is greatly influenced by the flowability of the cement paste. Also, in consideration of design strength and workability, mix design is carried out at various mixing ratios according to the purpose of the site. Therefore, in this study, based on the derived components of standard reference materials for cement paste, we suggested mixing ratio of standard reference materials that can uniformly simulate the flow characteristics of cement paste according to W/C. As a result, it was found that the yield stress was determined by the ratio of water and glycerol but plastic viscosity was controled by limestone content. Finally, the ratio of standard reference materials to simulate the rheological range of cement paste by W/C was suggested.

이산 요소법을 이용한 골재 입자의 혼합 및 배출 시 골재 거동 및 강판 마모에 관한 연구 (Discrete Element Method for Defining the Dynamic Behavior and Abrasion of Gravel in Mixer Trucks during Mixing and Discharging)

  • 유승훈;우호길
    • 한국기계가공학회지
    • /
    • 제19권12호
    • /
    • pp.34-41
    • /
    • 2020
  • Ready-mixed concrete is unconsolidated concrete typically transported to construction sites by using mixer trucks. A proper rotation of concrete is necessary to prevent its solidification in mixer trucks during transport: in accordance with the manufacturing method and quality inspection prescribed in KSF4009, this movement is maintained after the manufacturing of concrete in professional production plants and the addition of water, solid materials, and admixtures. Unfortunately, mixer truck parts wear out over long periods of time. In order to improve the wear resistance of the main part of mixer trucks, we used a steel plate with good wear resistance or partially added a reinforcement plate. In this study, we first tested the properties of concrete (as required for the DEM), and then carried out mixing and discharge simulations to define the actual operating conditions of mixer trucks. For each condition, we calculated the amount and location of wear. The reliability of our results was finally verified by comparing them with the measurement values. Overall, this study provided basic data for an optimal design of mixer trucks: one that would reduce the vehicles' weight and production costs.

Effect of Powder and Aggregates on Compactability of High Performance Concrete

  • Lee, Seung-Han;Han, Hyung-sub
    • KCI Concrete Journal
    • /
    • 제11권3호
    • /
    • pp.19-28
    • /
    • 1999
  • This study treated self-compacting high Performance concrete as two Phase materials of Paste and aggregates and examined the effect of powder and aggregates on self-compacting high performance, since fluidity and segregation resistance of fresh concrete are changed mainly by paste. To improve the fluidity and self-compactibility of concrete, optimum powder ratio of self-compacting high performance concrete using fly ash and blast-furnace slag as powders were calculated. This study was also designed to provide basic materials for suitable design of mix proportion by evaluating fluidity and compactibility by various volume ratios of fine aggregates, paste, and aggregates. As a result, the more fly ash was replaced, the more confined water ratio was reduced because of higher fluidity. The smallest confined water ratio was determined when 15% blast-furnace slag was replaced. The lowest confined water ratio was acquired when 20% fly ash and 15% blast-furnace slag were replaced together. The optimum fine aggregates ratio with the best compactibility was the fine aggregate ratio with the lowest percentage of void in mixing coarse aggregate and fine aggregate In mixing the high performance concrete. Self-compacting high performance concrete with desirable compactibility required more than minimum of unit volume weight. If the unit volume weight used was less than the minimum, concrete had seriously reduced compactibility.

  • PDF