• Title/Summary/Keyword: concrete mix

Search Result 1,199, Processing Time 0.025 seconds

Development of Autoclave Aerated Concrete Using Circulating Fluidized Bed Combustion Ash (순환유동층 보일러애쉬를 활용한 경량기포 콘크리트 개발)

  • Lee, Chang Joon;Song, Jeong-Hyun;Chung, Chul-Woo
    • Journal of the Korean Recycled Construction Resources Institute
    • /
    • v.9 no.1
    • /
    • pp.58-65
    • /
    • 2021
  • In this study, as a method to increase the recycling of circulating fluidized bed combustion ash(CFBCA), CFBCA was utilized to produce autoclave aerated concrete product since CFBCA contains quicklime and calcium sulfate components that are required for the manufacture of autoclave aerated concrete. Successful achievement of such objective will bring cost reduction with high value addition, saving of natural resources, and the reduction of environmental load. Various mixing designs were designed to evaluate the properties of autoclave aerated concrete made of CFBCA. Based on series of experimental program, prototypes mix design for factory manufacturing was obtained. According to the experimental results, it was confirmed that gypsum can be replaced with CFBCA through the method of pre-treating the CFBCA as a slurry. It was possible to produce competitive autoclave aerated concrete products using CFBCA.

Measurement of Carbonation Depth of Concrete in Old Buildings and Experimental Evaluation of Carbonation Degree and CO2 Absorption Using Differential Thermal Gravimetric Analysis, Part2 (노후 건축물의 콘크리트 탄산화 깊이 측정과 시차열 중량분석을 통한 탄산화도 및 CO2 흡수량 실험적 평가, Part2)

  • Lee, Sang-Hyun;Ki, Jun-Do;Cho, Hong-Bum;Park, Chang-Gun;Kim, Young-Sun;Moon, Hyung-Jae
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2023.05a
    • /
    • pp.317-318
    • /
    • 2023
  • This study is part of the carbonation degree DB accumulation through quantitative analysis of carbonation depth, Ca(OH)2 and CO2 according to the type of finish and years of use of old concrete structures in order to predict the amount of CO2 that can be absorbed through carbonation of concrete. To this end, the depth of carbonation of the concrete core specimen is measured using an indicator, and the dry amount of water combined with CO2 in the sample is measured using a differential thermal gravimetric analyzer for samples in the carbonation area and non-carbonated area classified by the indicator, and the absorption compared to the weight of the sample. The amount of absorbed CO2 was calculated. In addition, the degree of carbonation was calculated through quantitative comparison of Ca(OH)2 in the carbonation section and non-carbonation section. In the future, we will continue to add the survey and analysis data of dismantled structures and use them as basic data for estimating the amount of carbon dioxide that can be absorbed according to the exposure conditions and years of use by concrete mix.

  • PDF

Mechanical properties and durability of roller-compacted concrete incorporating powdered and granulated blast furnace slag in frost regions

  • Morteza Madhkhan;Mohsen Shamsaddini;Amin Tanhadoust
    • Structural Engineering and Mechanics
    • /
    • v.90 no.5
    • /
    • pp.467-480
    • /
    • 2024
  • The mechanical properties and durability of concrete pavements may be degraded in extreme situations, resulting in the need for partial repair or total replacement. During the past few decades, there has been a growing body of research on substituting a portion of Portland cement with alternative cementitious materials for improving concrete properties. In this study, two different configurations of powdered and granulated blast furnace slag were implemented, replacing fine aggregates (by 12 wt.%) and Portland cement (by 0, 20, 40, and 60 wt.%) in the making of roller-compacted concrete (RCC) mixes. The specimens were fabricated to investigate the mechanical properties and durability specifications, involving freeze-thaw, salt-scaling, and water absorption resistance. The experimental results indicated that the optimum mechanical properties of RCC mixes could be achieved when 20-40 wt.% of powdered slag was added to concrete mixes containing slag aggregates. Accordingly, the increases in compressive, tensile, and flexural strengths were 45, 50, and 28%, in comparison to the control specimen at the age of 90 days. Also, incorporating 60 wt.% of powdered slag gave rise to the optimum mix plan in terms of freeze-thaw resistance such that a negligible strength degradation was experienced after 300 cycles. In addition, the optimal moisture content of the proposed RCC mixtures was measured to be in the range of 5 to 6.56%. Furthermore, the partial addition of granulated slag was found to be more advantageous than using entirely natural sand in the improvement of the mechanical and durability characteristics of all mixture plans.

Performance of bricks and brick masonry prism made using coal fly ash and coal bottom ash

  • Verma, Surender K.;Ashish, Deepankar K.;Singh, Joginder
    • Advances in concrete construction
    • /
    • v.4 no.4
    • /
    • pp.231-242
    • /
    • 2016
  • The major problem of a coal combustion-based power plant is that it creates large quantity of solid wastes. So, to achieve the gainful use of waste materials and to avoid other environmental problems, this study was undertaken. The quantity of coal ash by-products, particularly coal fly ash and coal bottom ash has been increasing from the coal power plants around the world. The other objective of this study was to explore the possibility of utilization of coal ash in the production of ash bricks. In 15 different mixes, Mix Designation M-1 to M-15, the varying percentages of lime and gypsum were used and sand was replaced with coal bottom ash. Further, it has been noticed that the water absorption and compressive strength of mix M-15 is 13.36% and 7.85 MPa which is better than the conventional bricks. The test results of this investigation show that the prism strength of coal ash masonry prisms was more than that of the conventional bricks.

A Study on the Workability Estimation of Water-Soluble Rubberized Asphalt Waterproofing of Spray Type - Focus on the Material Condition - (수용성 뿜칠형 고무 아스팔트 방수재의 시공성 평가에 관한 연구 - 재료 조건을 중심으로 -)

  • Oh, Sang-Keun;Bae, Kee-Sun;Lee, Won-Hun;Kwak, Kyu-Sung;Choi, Eun-Su
    • Journal of the Korea Institute of Building Construction
    • /
    • v.3 no.2
    • /
    • pp.141-148
    • /
    • 2003
  • This study deals with the estimation of material properties according to the construction condition for water-soluble rubberized asphalt waterproofing material of spray type. In this study, the waterproofing material property by the spray construction method is suggested by means of estimation its tensile performance and temperature dependency according to mix proportion ratio(4:1, 8:1), referenced viscosity and solid content (A:360cps, 76%, B:580cps, 79%, C:490cps, 70%), spray angle($30^{\circ}$, $45^{\circ}$, $60^{\circ}$), and spray distance(30cm, 50cm, 70cm). The result of testing are as follows. (1) The mix proportion ratio of principal agent and hardener is 4:1. (2) The viscosity referenced and solid content are 490cps and 70%. (3) The spray angle referenced is $45.^{\circ}$ (4) The distance referenced from concrete surface to spray gun is 40~50cm.

Application of artificial neural networks for the prediction of the compressive strength of cement-based mortars

  • Asteris, Panagiotis G.;Apostolopoulou, Maria;Skentou, Athanasia D.;Moropoulou, Antonia
    • Computers and Concrete
    • /
    • v.24 no.4
    • /
    • pp.329-345
    • /
    • 2019
  • Despite the extensive use of mortar materials in constructions over the last decades, there is not yet a robust quantitative method, available in the literature, which can reliably predict mortar strength based on its mix components. This limitation is due to the highly nonlinear relation between the mortar's compressive strength and the mixed components. In this paper, the application of artificial neural networks for predicting the compressive strength of mortars has been investigated. Specifically, surrogate models (such as artificial neural network models) have been used for the prediction of the compressive strength of mortars (based on experimental data available in the literature). Furthermore, compressive strength maps are presented for the first time, aiming to facilitate mortar mix design. The comparison of the derived results with the experimental findings demonstrates the ability of artificial neural networks to approximate the compressive strength of mortars in a reliable and robust manner.

Analysis of Rheological Properties of Cement Paste with Binder Type and Composition Ratio (결합재 타입 및 구성비 변화에 따른 시멘트 페이스트의 레올로지 특성 분석)

  • Jeon, Sung IL;Nam, Jeong Hee;Lee, Moon Sup;Nho, Jae Myun
    • International Journal of Highway Engineering
    • /
    • v.19 no.5
    • /
    • pp.77-88
    • /
    • 2017
  • PURPOSES : It is necessary to clarify the rheological properties of cement paste as a basic research in the development of mechanistic concrete mix design. The rheological properties of cement paste with different binder types, mix propositions, and with/without high range water reducers have been analyzed. METHODS : In this study, ordinary Portland cement, fly-ash, blast furnace slag, silica fume, and limestone powder were used as binders. The range of water-binder ratio was 0.3-0.5, and a total of 30 different mixes have been tested. The slump flow test, V-funnel test, and Dynamic Shear Rheometer (DSR) test were performed to analyze the rheological properties of cement paste. RESULTS : As a result of the slump flow test, it was found that the composition ratio of the binder contents greatly affected the paste flow when the high range water reducers were added. The results of V-funnel test showed that when the water-binder ratio was decreased without high range water reducers, the binder composition ratio had a large effect on the passing time of the V-funnel tester, but with high range water reducers the impact of the binder composition ratio was decreased. The slump flow and V-funnel have a certain relationship with the rheological factors (yield stress and plastic viscosity), but the correlation was not significant. Finally, we proposed the M-value considering the density and specific surface area of the binder. The correlation between rheological factors and M-value were better demonstrated than experimental values, but there is still a limit to predict the rheological factor in general mix design. CONCLUSIONS :In this study, the rheological properties of cement paste were analyzed. The binder type, composition ratio of binder, and with/without high range water reducers have combined to provide the complex effects on the rheological properties of cement paste. The correlation between the proposed M-value and rheological factor was found to be better than experimental results, but needs to be improved in the future.

Improvement of Low-quality Local Aggregates Using Coating Materials (코팅재료를 이용한 비쇄석골재의 성능향상)

  • Park Dae-Wook;Kim Min-Gu
    • International Journal of Highway Engineering
    • /
    • v.8 no.3 s.29
    • /
    • pp.39-48
    • /
    • 2006
  • A laboratory investigation was conducted wherein smooth, rounded, siliceous river gravel aggregates were coated with fine-grained polyethylene, carpet co-product, or cement + styrene butadiene rubber latex and used to prepare hot mix asphalt concrete specimens. Only the coarse (+ No.4) aggregates were coated. The concept was that the coatings would enhance surface roughness of the aggregates and, thus, produce asphalt mixtures with superior engineering properties. Hot mix asphalt specimens were prepared and evaluated using several standard and non-standard test procedures. Based on experiences during the coating processes and analyses of these limited test results, the following was concluded: All three aggregate coating materials increased Hveem and Marshall stability, tensile strength, and resilient modulus(stiffness). These findings are indicative of improved resistance to rutting and cracking in hot mix asphalt pavements prepared using coated gravel aggregates in comparison to similar uncoated gravel aggregates.

  • PDF

Application of New Type Accelerator for High Quality Shotcrete (고품질 숏크리트 개발을 위한 새로운 급결제 적용)

  • Park, Hae-Geun;Lee, Myeong-Sub;Kim, Jea-Kwon;Jung, Myung-Keun
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.4 no.1
    • /
    • pp.45-55
    • /
    • 2002
  • From the early 1980's, the New Austrian Tunnelling Method (NATM) has been developed as one of the standard tunnelling methods in Korea. Approximately 10 years ago, wet-mix shotcrete with sodium silicate (waterglass) accelerator was introduced and widely used to tunnel lining and underground support. However, this accelerator had some disadvantages due to the decrease of long-term strength compared to plain concrete (without accelerator) and low quality of the hardened shotcrete. In order to compensate for these disadvantages, recently developed alkali-free accelerator has been successfully demonstrated in numerous projects and applications as a new material to make tunnels more durable and safer. An experimental investigation was carried out in order to verify the strength behavior of wet-mix Steel Fiber Reinforced Shotcrete (SFRS) with alkali-free accelerator. Compressive strength, flexural strength, and flexural toughness were measured by testing specimens extracted from the shotcrete panels. From the results, wet-mix SFRS with alkali-free accelerator exhibited excellent strength improvement compared to the conventional shotcrete accelerator.

  • PDF

Effects of Crushed Coal Bottom Ash on the Properties of Mortar with Various Water-to-binder Ratios (다양한 물-결합재비를 갖는 모르타르의 물성에 대한 파쇄 바텀애시의 영향)

  • Tafesse, Million;Kim, Hyeong-Ki
    • Resources Recycling
    • /
    • v.25 no.6
    • /
    • pp.29-40
    • /
    • 2016
  • Effects of crushed coal bottom ash (CBA) with maximum size of 1 mm on the properties of mortar with various water-to-binder ratios (w/b) were evaluated. The present work is a fundamental study to establish a method of mix proportion design for mortar and concrete with CBA. The workability, air contents, and compressive strength of mortar were measured. Efficiency of CBA on the compressive strength at 28 days, which was adopted for mix proportion design, was evaluated based on concepts of 'equivalent strength' in CEN/TR 16637. It was found that the CBA could be contributed as a binder in mortar in some cases, while in other cases act as at aggregates. The efficiency of CBA was influenced by types of CBA and their replacement ratio, and w/b of mortar.