Browse > Article
http://dx.doi.org/10.12989/cac.2019.24.4.329

Application of artificial neural networks for the prediction of the compressive strength of cement-based mortars  

Asteris, Panagiotis G. (Computational Mechanics Laboratory, School of Pedagogical and Technological Education)
Apostolopoulou, Maria (Laboratory of Materials Science and Engineering, School of Chemical Engineering, National Technical University of Athens, Zografou Campus)
Skentou, Athanasia D. (Computational Mechanics Laboratory, School of Pedagogical and Technological Education)
Moropoulou, Antonia (Laboratory of Materials Science and Engineering, School of Chemical Engineering, National Technical University of Athens, Zografou Campus)
Publication Information
Computers and Concrete / v.24, no.4, 2019 , pp. 329-345 More about this Journal
Abstract
Despite the extensive use of mortar materials in constructions over the last decades, there is not yet a robust quantitative method, available in the literature, which can reliably predict mortar strength based on its mix components. This limitation is due to the highly nonlinear relation between the mortar's compressive strength and the mixed components. In this paper, the application of artificial neural networks for predicting the compressive strength of mortars has been investigated. Specifically, surrogate models (such as artificial neural network models) have been used for the prediction of the compressive strength of mortars (based on experimental data available in the literature). Furthermore, compressive strength maps are presented for the first time, aiming to facilitate mortar mix design. The comparison of the derived results with the experimental findings demonstrates the ability of artificial neural networks to approximate the compressive strength of mortars in a reliable and robust manner.
Keywords
artificial neural networks (ANNs); cement; compressive strength; metakaolin; mortar; soft computing techniques;
Citations & Related Records
Times Cited By KSCI : 18  (Citation Analysis)
연도 인용수 순위
1 Alkayem, N.F., Cao, M., Zhang, Y., Bayat, M. and Su, Z. (2018), "Structural damage detection using finite element model updating with evolutionary algorithms: a survey", Neur. Comput. Appl., 30(2), 389-411. https://doi.org/10.1007/s00521-017-3284-1.   DOI
2 Abdollahzadeh, G., Jahani, E. and Kashir, Z. (2016), "Predicting of compressive strength of recycled aggregate concrete by genetic programming", Comput. Concrete, 18(2), 155-164. http://dx.doi.org/10.12989/cac.2016.18.2.155.   DOI
3 Ackley, D.H., Hinton, G.E. and Sejnowski, T.J. (1985), "A learning algorithm for Boltzmann machines", Cognitive Sci., 9(1), 147-169. https://doi.org/10.1016/S0364-0213(85)80012-4.   DOI
4 Nguyen, M.D., Pham, B.T., Tuyen, T.T., Yen, H.P.H., Prakash, I., Vu, T.T., Chapi, K., Shirzadi, A., Shahabi, H., Dou, J., Quoc, N.K. and Bui, D.T. (2019), "Development of an artificial intelligence approach for prediction of consolidation coefficient of soft soil: A sensitivity analysis", Open Constr. Build. Technol. J., 13(1).
5 Nikoo, M., Hadzima-Nyarko, M., KarloNyarko, E. and Nikoo, M. (2018), "Determining the natural frequency of cantilever beams using ANN and heuristic search", Appl. Artif. Intell., 32(3), 309-334. https://doi.org/10.1080/08839514.2018.1448003.   DOI
6 Nikoo, M., Ramezani, F., Hadzima-Nyarko, M., Nyarko, E.K. and Nikoo, M. (2016) "Flood-routing modeling with neural network optimized by social-based algorithm", Nat. Hazard., 82(1), 1-24. https://doi.org/10.1007/s11069-016-2176-5.   DOI
7 Nikoo, M., Sadowski, L., Khademi, F. and Nikoo, M. (2017), "Determination of damage in reinforced concrete frames with shear walls using self-organizing feature map", Appl. Comput. Intel. Soft Comput., 2017, Article ID 3508189, 10. https://doi.org/10.1155/2017/3508189.
8 Karlik, B. and Olgac, A.V. (2011), "Performance analysis of various activation functions in generalized MLP architectures of neural networks", Int. J. Artif. Intell. Exp Syst., 1, 111-122.
9 Kaveh, A., Bakhshpoori, T. and Hamze-Ziabari, S.M. (2018), "GMDH-based prediction of shear strength of FRP-RC beams with and without stirrups", Comput. Concrete, 22(2), 197-207. https://doi.org/10.12989/cac.2018.22.2.197.   DOI
10 Chen, H., Asteris, P.G., Armaghani, D.J., Gordan, B. and Pham, B.T. (2019), "Assessing dynamic conditions of the retaining wall: Developing two hybrid intelligent models", Appl. Sci., 9(6), 1042. https://doi.org/10.3390/app9061042.   DOI
11 Cheng, B. and Titterington, D.M. (1994), "Neural networks: A review from a statistical perspective", Statist. Sci., 9(1), 2-30.   DOI
12 Courard, L., Darimont, A., Schouterden, M., Ferauche, F., Willem, X. and Degeimbre, R. (2003), "Durability of mortars modified with metakaolin", Cement Concrete Res., 33(9), 1473-1479. https://doi.org/10.1016/S0008-8846(03)00090-5.   DOI
13 Delen, D., Sharda, R. and Bessonov, M. (2006), "Identifying significant predictors of injury severity in traffic accidents using a series of artificial neural networks", Accid. Anal. Prev., 38, 434-444. https://doi.org/10.1016/j.aap.2005.06.024.   DOI
14 Rosenblatt, F. (1958), "The perceptron: A probabilistic model for information storage and organization in the brain", Psycholog. Rev., 65(6), 386-408. http://dx.doi.org/10.1037/h0042519.   DOI
15 Sadowski, L., Nikoo, M. and Nikoo, M. (2015), "Principal component analysis combined with a self organization feature map to determine the pull-off adhesion between concrete layers", Constr. Build. Mater., 78, 386-396. https://doi.org/10.1016/j.conbuildmat.2015.01.034.   DOI
16 Sadowski, L., Nikoo, M. and Nikoo, M. (2018), "Concrete compressive strength prediction using the imperialist competitive algorithm", Comput. Concrete, 22(4), 355-363. https://doi.org/10.12989/cac.2018.22.4.355.   DOI
17 Kewalramani, M.A. and Gupta, R. (2006), "Concrete compressive strength prediction using ultrasonic pulse velocity through artificial neural networks", Autom. Constr., 15(3), 374-379. https://doi.org/10.1016/j.autcon.2005.07.003.   DOI
18 NBN B12-208 (1969), Ciments, Essais de flexion et compression, Belgian Institute for Standardization, Brussels.
19 Dao, D.V., Ly, H.B., Trinh, S.H., Le, T.T. and Pham, B.T. (2019), "Artificial intelligence approaches for prediction of compressive strength of geopolymer concrete", Mater., 12, 983. https://doi.org/10.3390/ma12060983.   DOI
20 Dao, V.D., Trinh, S.H., Ly, H.B. and Pham, B.T. (2019), "Prediction of compressive strength of geopolymer concrete using entirely steel slag aggregates: Novel hybrid artificial intelligence approaches", Appl. Sci., 9(6), 1113. https://doi.org/10.3390/app9061113.   DOI
21 Demir, F. (2008), "Prediction of elastic modulus of normal and high strength concrete by artificial neural networks", Constr. Build. Mater., 22(7), 1428-1435. https://doi.org/10.1016/j.conbuildmat.2007.04.004.   DOI
22 Dias, W.P.S. and Pooliyadda, S.P. (2001), "Neural networks for predicting properties of concretes with admixtures", Constr. Build. Mater., 15, 371-379. https://doi.org/10.1016/S0950-0618(01)00006-X.   DOI
23 Dutta, S., Samui, P. and Kim, D. (2018), "Comparison of machine learning techniques to predict compressive strength of concrete", Comput. Concrete, 21(4), 463-470. https://doi.org/10.12989/cac.2018.21.4.463.   DOI
24 Saridemir, M. (2009), "Predicting the compressive strength of mortars containing metakaolin by artificial neural networks and fuzzy logic", Adv. Eng. Softw., 40(9), 920-927. https://doi.org/10.1016/j.advengsoft.2008.12.008.   DOI
25 Safiuddin, M., Raman, S.N., Salam, M.A. and Jumaat, M.Z. (2016), "Modeling of compressive strength for selfconsolidating high-strength concrete incorporating palm oil fuel ash", Mater., 9, 396. https://doi.org/10.3390/ma9050396.   DOI
26 Saha, P., Prasad, M.L.V. and RathishKumar, P. (2017), "Predicting strength of SCC using artificial neural network and multivariable regression analysis", Comput. Concrete, 20(1), 31-38. https://doi.org/10.12989/cac.2017.20.1.031.   DOI
27 Salehi, H. and Burgueno, R. (2018), "Emerging artificial intelligence methods in structural engineering", Eng. Struct., 171, 170-189. https://doi.org/10.1016/j.engstruct.2018.05.084.   DOI
28 Ripley, B.D. (1996), Pattern Recognition and Neural Networks, 1st Edition, Cambridge University Press, Cambridge, United Kingdom.
29 Sarir, P., Chen, J., Asteris, P.G., Armaghani, D.J. and Tahir, M.M. (2019), "Developing GEP tree-based, neuro-swarm, and whale optimization models for evaluation of bearing capacity of concrete-filled steel tube columns", Eng. Comput., 1-19. https://doi.org/10.1007/s00366-019-00808-y.
30 Acikgenc, M., Ulas, M. and Alyamac, K.E. (2015), "Using an artificial neural network to predict mix compositions of steel fiber-reinforced concrete", Arab. J. Sci. Eng., 40, 407-419. https://doi.org/10.1007/s13369-014-1549-x.   DOI
31 Altun, F., Kişi, O. and Aydin, K. (2008), "Predicting the compressive strength of steel fiber added lightweight concrete using neural network", Comput. Mater. Sci., 42(2), 259-265. https://doi.org/10.1016/j.commatsci.2007.07.011.   DOI
32 Armaghani, D.J., Safari, V., Fahimifar, A., Mohd Amin, M.F., Monjezi, M. and Mohammadi, M.A. (2018), "Uniaxial compressive strength prediction through a new technique based on gene expression programming", Neur. Comput. Appl., 30(11), 3523-3532. https://doi.org/10.1007/s00521-017-2939-2.   DOI
33 Apostolopoulou, M., Armaghani, D.J., Bakolas, A., Douvika, M.G., Moropoulou, A. and Asteris, P.G. (2019), "Compressive strength of natural hydraulic lime mortars using soft computing techniques", Procedia Struct. Integ., 17, 914-923. https://doi.org/10.1016/j.prostr.2019.08.122.   DOI
34 Apostolopoulou, M., Douvika, M.G., Kanellopoulos, I.N., Moropoulou, A. and Asteris, P.G. (2018), "Prediction of compressive strength of mortars using artificial neural networks", 1st International Conference TMM_CH, Transdisciplinary Multispectral Modelling and Cooperation for the Preservation of Cultural Heritage, Athens, Greece, October.
35 Armaghani, D.J., Hatzigeorgiou, G.D., Karamani, Ch., Skentou, A., Zoumpoulaki, I. and Asteris, P.G. (2019), "Soft computingbased techniques for concrete beams shear strength", Procedia Struct. Integ., 17, 924-933. https://doi.org/10.1016/j.prostr.2019.08.123.   DOI
36 Asteris, P.G. and Kolovos, K.G. (2019), "Self-compacting concrete strength prediction using surrogate models", Neur. Comput. Appl., 31, 409-424. https://doi.org/10.1007/s00521-017-3007-7.   DOI
37 Lee, S.C. (2003), "Prediction of concrete strength using artificial neural networks", Eng. Struct., 25, 849-857. https://doi.org/10.1016/S0141-0296(03)00004-X.   DOI
38 Le, L.M., Ly, H.B., Pham, B.T., Le, V.M., Pham, T.A., Nguyen, D.H., Tran, X.T. and Le, T.T. (2019), "Hybrid artificial intelligence approaches for predicting buckling damage of steel columns under axial compression", Mater., 12(10), 1670. https://doi.org/10.3390/ma12101670.   DOI
39 LeCun, Y., Bengio, Y. and Hinton, G. (2015), "Deep learning", Nature, 521(7553), 436-444. https://doi.org/10.1038/nature14539.   DOI
40 LeCun, Y., Botoo, L., Bengio, Y. and Haffner, P. (1998), "Gradient-based learning applied to document recognition", Proc. IEEE, 86(11), 2278-2324.   DOI
41 Lourakis, M.I.A. (2005), "A brief description of the Levenberg- Marquardt algorithm implemented by levmar", Hellas (FORTH), Institute of Computer Science Foundation for Research and Technology, http://www.ics.forth.gr/-lourakis/levmar/levmar.
42 Ly, H-B., Pham, B.T., Dao, D.V., Le, V.M., Le, L.M. and Le, TT. (2019), "Improvement of ANFIS model for prediction of compressive strength of manufactured sand concrete", Appl. Sci., 9(18), 3841. https://doi.org/10.3390/app9183841.   DOI
43 ASTM C 109/C 109M-02 (2002), Standard Test Method for Compressive Strength of Hydraulic Cement Mortars (Using 2- in. or [50-mm] cube specimens), Annual Book of ASTM Standards, American Society for Testing and Materials, Philadelphia, PA, USA.
44 EN 197-1 (2011), Cement. Composition, Specifications and Conformity Criteria for Common Cements
45 Erdal, H., Erdal, M., Şimşek, O. and Erdal, H.İ. (2018), "Prediction of concrete compressive strength using nondestructive test results", Comput. Concrete, 21(4), 407-417. https://doi.org/10.12989/cac.2018.21.4.407.   DOI
46 Schmidhuber, J. (2015), "Deep learning in neural networks: An overview", Neur. Network., 61, 85-117. https://doi.org/10.1016/j.neunet.2014.09.003.   DOI
47 Sumasree, C. and Sajja, S. (2016), "Effect of metakaolin and cerafibermix on mechanical and durability properties of mortars", Int. J. Sci. Eng. Technol., 4(3), 501-506.
48 Ly, H.B., Le, L.M., Duong, H.T., Nguyen, T.C., Pham, T.A., Le, T.T., Le, V.M., Nguyen-Ngoc, L. and Pham, B.T. (2019), "Hybrid artificial intelligence approaches for predicting critical buckling load of structural members under compression considering the influence of initial geometric imperfections", Appl. Sci., 9(11), 2258. https://doi.org/10.3390/app9112258.   DOI
49 Khademi, F., Akbari, M., Jamal, S.M. and Nikoo, M. (2017), "Multiple linear regression, artificial neural network, and fuzzy logic prediction of 28 days compressive strength of concrete", Front. Struct. Civil Eng., 11, 90-99. https://doi.org/10.1007/s11709-016-0363-9.   DOI
50 Eskandari-Naddaf, H. and Kazemi, R. (2017), "ANN prediction of cement mortar compressive strength, influence of cement strength class", Constr. Build. Mater., 138, 1-11. https://doi.org/10.1016/j.conbuildmat.2017.01.132.   DOI
51 ASTM Standards (1983), ASTM Designation: C 109-80 Standard Test Method for Compressive Strength of Hydraulic Cement Mortars.
52 Bartlett, P.L. (1998), "The sample complexity of pattern classification with neural networks: The size of the weights is more important than the size of the network", IEEE Tran. Inform. Theory, 44, 525-536. https://doi.org/10.1109/18.661502.   DOI
53 Batis, G., Pantazopoulou, P., Tsivilis, S. and Badogiannis, E. (2005), "The effect of metakaolin on the corrosion behavior of cement mortars", Cement Concrete Compos., 27(1), 125-130. https://doi.org/10.1016/j.cemconcomp.2004.02.041.   DOI
54 Baykasoglu, A., Dereli, T.U. and Tanis, S. (2004), "Prediction of cement strength using soft computing techniques", Cement Concrete Res., 34, 2083-2090. https://doi.org/10.1016/j.cemconres.2004.03.028.   DOI
55 EN 196-1 (1994), Methods of Testing Cement-Part 1: Determination of Strength.
56 Ongpeng, J., Soberano, M., Oreta, A. and Hirose, S. (2017), "Artificial neural network model using ultrasonic test results to predict compressive stress in concrete", Comput. Concrete, 19(1), 59-68. https://doi.org/10.12989/cac.2017.19.1.059.   DOI
57 Topçu, I.B. and Saridemir, M. (2007), "Prediction of properties of waste AAC aggregate concrete using artificial neural network", Comput. Mater. Sci., 41(1), 117-125. https://doi.org/10.1016/j.commatsci.2007.03.010.   DOI
58 Nikoo, M., Zarfam, P. and Sayahpour, H. (2015), "Determination of compressive strength of concrete using Self Organization Feature Map (SOFM)", Eng. Comput., 31, 113-121. https://doi.org/10.1007/s00366-013-0334-x.   DOI
59 Oh, T.K., Kim, J., Lee, C. and Park, S. (2017), "Nondestructive concrete strength estimation based on electro-mechanical impedance with artificial neural network", J. Adv. Concr. Technol., 15, 94-102. https://doi.org/10.3151/jact.15.94.   DOI
60 Onyari, E.K. and Ikotun, B.D. (2018), "Prediction of compressive and flexural strengths of a modified zeolite additive mortar using artificial neural network", Constr. Build. Mater., 187, 1232-1241. https://doi.org/10.1016/j.conbuildmat.2018.08.079.   DOI
61 O zcan, F., Atis, C.D., Karahan, O., Uncuoglu, E. and Tanyildizi, H. (2009), "Comparison of artificial neural network and fuzzy logic models for prediction of long-term compressive strength of silica fume concrete", Adv. Eng. Softw., 40, 856-863. https://doi.org/10.1016/j.advengsoft.2009.01.005.   DOI
62 Asteris, P.G. and Nikoo, M. (2019), "Artificial bee colony-based neural network for the prediction of the fundamental period of infilled frame structures", Neur. Comput. Appl., 31(9), 4837-4847. https://doi.org/10.1007/s00521-018-03965-1.   DOI
63 Asteris, P.G., Argyropoulos, I., Cavaleri, L., Rodrigues, H., Varum, H., Thomas, J., Paulo, B. and Lourenco, P.B. (2018b), "Masonry compressive strength prediction using artificial neural networks", 1st International Conference TMM_CH, Transdisciplinary Multispectral Modelling and Cooperation for the Preservation of Cultural Heritage, Athens, Greece, October.
64 Asteris, P.G. and Plevris, V. (2013), "Neural network approximation of the masonry failure under biaxial compressive stress", Proceedings of the 3rd South-East European Conference on Computational Mechanics (SEECCM III), an ECCOMAS and IACM Special Interest Conference, Kos Island, Greece, June.
65 Asteris, P.G. and Plevris, V. (2017), "Anisotropic masonry failure criterion using artificial neural networks", Neur. Comput. Appl., 28(8), 2207-2229. https://doi.org/10.1007/s00521-016-2181-3.   DOI
66 Asteris, P.G. Ashrafian, A. and Rezaie-Balf, M. (2019a), "Prediction of the compressive strength of self-compacting concrete using surrogate models", Comput. Concrete, 24(2), 137-150. https://doi.org/10.12989/cac.2019.24.2.137.   DOI
67 Asteris, P.G., Kolovos, K.G., Douvika, M.G. and Roinos, K. (2016), "Prediction of self-compacting concrete strength using artificial neural networks", Eur. J. Environ. Civil Eng., 20, 102-122. https://doi.org/10.1080/19648189.2016.1246693.   DOI
68 Asteris, P.G., Nozhati, S., Nikoo, M., Cavaleri, L. and Nikoo, M. (2019b), "Krill herd algorithm-based neural network in structural seismic reliability evaluation", Mech. Adv. Mater. Struct., 26(13), 1146-1153. https://doi.org/10.1080/15376494.2018.1430874.   DOI
69 Asteris, P.G., Roussis, P.C. and Douvika, M.G. (2017), "Feedforward neural network prediction of the mechanical properties of sandcrete materials", Sensor., 17(6),1344. https://doi.org/10.3390/s17061344.   DOI
70 Pala, M., O zbay, E., O ztas, A. and Yuce, M.I. (2007), "Appraisal of long-term effects of fly ash and silica fume on compressive strength of concrete by neural networks", Constr. Build. Mater., 21(2), 384-394. https://doi.org/10.1016/j.conbuildmat.2005.08.009.   DOI
71 Parande, A.K., Ramesh Babu, B., AswinKarthik, M., Deepak Kumaar, K.K. and Palaniswamy, N. (2008), "Study on strength and corrosion performance for steel embedded in metakaolin blended concrete/mortar", Constr. Build. Mater., 22(3), 127-134. https://doi.org/10.1016/j.conbuildmat.2006.10.003.   DOI
72 Peng, C.H., Yeh, I.C. and Lien, L.C. (2009), "Modeling strength of high-performance concrete using genetic operation trees with pruning techniques", Comput. Concrete, 6(3), 203-223. https://doi.org/10.12989/cac.2009.6.3.203.   DOI
73 Pham, B.T., Tien Bui, D. and Prakash, I. (2017), "Landslide susceptibility assessment using bagging ensemble based alternating decision trees, logistic regression and J48 decision trees methods: A comparative study", Geotech. Geolog. Eng., 35(6), 2597-2611. https://doi.org/10.1007/s10706-017-0264-2.   DOI
74 Plevris, V. and Asteris, P. (2015), "Anisotropic failure criterion for brittle materials using artificial beural betworks", Proceedings of the COMPDYN 2015-5th ECCOMAS Thematic Conference on Computational Methods in Structural Dynamics and Earthquake Engineering, Crete Island, Greece, May.
75 Plevris, V. and Asteris, P.G. (2014), "Modeling of masonry failure surface under biaxial compressive stress using neural networks", Constr. Build. Mater., 55, 447-461. https://doi.org/10.1016/j.conbuildmat.2014.01.041.   DOI
76 Potgieter-Vermaak, S.S. and Potgieter, J.H. (2006), "Metakaolin as an extender in South African cement", J. Mater. Civil Eng., 18(4), 619-623. https://doi.org/10.1061/(ASCE)0899-1561(2006)18:4(619).   DOI
77 Gazder, U., Al-Amoudi, O.S.B., Saad Khan, S.M. and Maslehuddin, M. (2017), "Predicting compressive strength of blended cement concrete with ANNs", Comput. Concrete, 20(6), 627-634. https://doi.org/10.12989/cac.2017.20.6.627.   DOI
78 Mansouri, I. and Kisi, O. (2015), "Prediction of debonding strength for masonry elements retrofitted with FRP composites using neuro fuzzy and neural network approaches", Compos. Part B Eng., 70, 247-255. https://doi.org/10.1016/j.compositesb.2014.11.023.   DOI
79 Mansouri, I., Gholampour, A., Kisi, O. and Ozbakkaloglu, T. (2016), "Evaluation of peak and residual conditions of actively confined concrete using neuro-fuzzy and neural computing techniques", Neur. Comput. Appl., 1-16. https://doi.org/10.1007/s00521-016-2492-4.
80 Fukushima, K. (1998), "Neocognitron: A hierarchical neural network capable of visual pattern recognition", Neur. Network., 1(2), 119-130. https://doi.org/10.1016/0893-6080(88)90014-7.   DOI
81 Hinton, G.E. and Salakhutdinov, R.R. (2006), "Reducing the dimensionality of data with neural networks", Sci., 313, 504-507. https://doi.org/10.1126/science.1127647.   DOI
82 Topçu, I.B. and Saridemir, M. (2008), "Prediction of compressive strength of concrete containing fly ash using artificial neural networks and fuzzy logic", Comput. Mater. Sci., 41, 305-311. https://doi.org/10.1016/j.commatsci.2007.04.009.   DOI
83 Trtnik, G., Kavcic, F. and Turk, G. (2009), "Prediction of concrete strength using ultrasonic pulse velocity and artificial neural networks", Ultrasonics, 49, 53-60. https://doi.org/10.1016/j.ultras.2008.05.001.   DOI
84 Tsai, H.C. and Liao, M.C. (2019), "Knowledge-based learning for modeling concrete compressive strength using genetic programming", Comput. Concrete, 23(4), 255-265. https://doi.org/10.12989/cac.2019.23.4.255.   DOI
85 Giovanis, D.G. and Papadopoulos, V. (2015), "Spectral representation-based neural network assisted stochastic structural mechanics", Eng. Struct., 84, 382-394. https://doi.org/10.1016/j.engstruct.2014.11.044.   DOI
86 Golafshani, E.M. and Pazouki, G. (2018), "Predicting the compressive strength of self-compacting concrete containing fly ash using a hybrid artificial intelligence method", Comput. Concrete, 22(4), 419-437. https://doi.org/10.12989/cac.2018.22.4.419.   DOI
87 Hinton, G.E., Osindero, S. and The, Y.W. (2006), "A fast learning algorithm for deep belief nets", Neur. Comput., 18(7), 1527-1554. https://doi.org/10.1162/neco.2006.18.7.1527.   DOI
88 Boukhatem, B., Kenai, S., Hamou, A.T., Ziou, D. and Ghrici, M. (2012), "Predicting concrete properties using Neural Networks (NN) with Principal Component Analysis (PCA) technique", Comput. Concrete, 10(6), 557-573. https://doi.org/10.12989/cac.2012.10.6.557.   DOI
89 Belalia Douma, O., Boukhatem, B., Ghrici, M. and Tagnit-Hamou, A. (2017), "Prediction of properties of self-compacting concrete containing fly ash using artificial neural network", Neur. Comput. Appl., 28(Suppl1), 707-718. https://doi.org/10.1007/s00521-016-2368-7.   DOI
90 Bilgehan, M. and Turgut, P. (2010), "The use of neural networks in concrete compressive strength estimation", Comput. Concrete, 7(3), 271-283. https://doi.org/10.12989/cac.2010.7.3.271.   DOI
91 Bui, D.T., Ghareh, S., Moayedi, H. and Nguyen, H. (2019), "Finetuning of neural computing using whale optimization algorithm for predicting compressive strength of concrete", Eng. Comput., 1-12. https://doi.org/10.1007/s00366-019-00850-w.
92 Camoes, A. and Martins, F.F. (2017), "Compressive strength prediction of CFRP confined concrete using data mining techniques", Comput. Concrete, 19(3), 233-241. https://doi.org/10.12989/cac.2017.19.3.233.   DOI
93 Cao, M., Alkayem, N.F., Pan, L. and Novak D. (2016), "Advanced methods in neural networks-based sensitivity analysis with their applications in civil engineering, artificial neural networks - Models and applications", Ed. Joao Luis Garcia Rosa, InTech, https://doi.org/10.5772/64026.
94 Castelli, M., Goncalves, I., Popovic, A. and Trujillo, L. (2017), "An evolutionary system for the prediction of high performance concrete strength based on semantic genetic programming", Comput. Concrete, 19(6), 651-658. https://doi.org/10.12989/cac.2017.19.6.651.   DOI
95 McCulloch, W.S. and Pitts, W. (1943), "A logical calculus of the ideas immanent in nervous activity", Bull. Math. Biophys, 5(4), 115-133. https://doi.org/10.1007/BF02478259.   DOI
96 Cavaleri, L., Asteris, P.G., Psyllaki, P.P., Douvika, M.G., Skentou, A.D. and Vaxevanidis, N.M. (2019), "Prediction of surface treatment effects on the tribological performance of tool steels using artificial neural networks", Appl. Sci., 9(14), 2788. https://doi.org/10.3390/app9142788.   DOI
97 Asteris, P.G., Tsaris, A.K., Cavaleri, L., Repapis, C.C., Papalou, A., Di Trapani, F. and Karypidis, D.F. (2016), "Prediction of the fundamental period of infilled RC frame structures using artificial neural networks", Comput. Intell. Neurosci., 2016, 5104907. https://doi.org/10.1155/2016/5104907.
98 Mardani-Aghabaglou, A., Sezer, G.İ. and Ramyar, K. (2014), "Comparison of fly ash, silica fume and metakaolin from mechanical properties and durability performance of mortar mixtures view point", Constr. Build. Mater., 70, 17-25. https://doi.org/10.1016/j.conbuildmat.2014.07.089.   DOI
99 Mashhadban, H., Kutanaei, S.S. and Sayarinejad, M.A. (2016), "Prediction and modeling of mechanical properties in fiber reinforced self-compacting concrete using particle swarm optimization algorithm and artificial neural network", Constr. Build. Mater., 119, 277-287. https://doi.org/10.1016/j.conbuildmat.2016.05.034.   DOI
100 Mazloom, M. and Yoosefi, M.M. (2013), "Predicting the indirect tensile strength of self-compacting concrete using artificial neural networks", Comput. Concrete, 12(3), 285-301. https://doi.org/10.12989/cac.2013.12.3.285.   DOI
101 Minsky, M. and Papert, S. (1969), Perceptrons: An Introduction to Computational Geometry, The MIT Press, Cambridge, MA, ISBN 0-262-63022-2.
102 Moayedi, H., Foong, L.K., Nguyen, H., Bui, D.T., Jusoh, W.A.W. and Rashid, A.S.A. (2019), "Optimizing ANN models with PSO for predicting in short building seismic response", Eng. Comput., 36, 1-16. https://doi.org/10.1007/s00366-019-00733-0.
103 Moayedi, H., Moatamediyan, A., Nguyen, H., Bui, XN., Bui, D.T. and Rashid, A.S.A. (2019), "Prediction of ultimate bearing capacity through various novel evolutionary and neural network models", Eng. Comput., 36, 1-17. https://doi.org/10.1007/s00366-019-00723-2.
104 Ince, R. (2004), "Prediction of fracture parameters of concrete by artificial neural networks", Eng. Fract. Mech., 71(15), 2143-2159. https://doi.org/10.1016/j.engfracmech.2003.12.004.   DOI
105 Hoang, N.D. and Bui, D.T. (2018), "Predicting earthquakeinduced soil liquefaction based on a hybridization of kernel Fisher discriminant analysis and a least squares support vector machine: a multi-dataset study", Bull. Eng. Geol. Environ., 77(1), 191-204. https://doi.org/10.1007/s10064-016-0924-0.   DOI
106 Hola, A. and Sadowski, L. (2019), "A method of the neural identification of the moisture content in brick walls of historic buildings on the basis of non-destructive tests", Autom. Constr., 106, 102850. https://doi.org/10.1016/j.autcon.2019.102850.   DOI
107 Hornik, K., Stinchcombe, M. and White, H. (1989), "Multilayer feedforward networks are universal approximators", Neur. Network., 2, 359-366. https://doi.org/10.1016/0893-6080(89)90020-8.   DOI
108 Waszczyszyn, Z. and Ziemiański, L. (2001), "Neural networks in mechanics of structures and materials-New results and prospects of applications", Comput. Struct., 79, 2261-2276. https://doi.org/10.1016/S0045-7949(01)00083-9.   DOI
109 Turkmen, I., Bingol, A.F., Tortum, A., Demirboga, R. and Gul, R. (2017), "Properties of pumice aggregate concretes at elevated temperatures and comparison with ANN models", Fire Mater., 41, 142-153. https://doi.org/10.1002/fam.2374.   DOI
110 Vu, D.D., Stroeven, P. and Bui, V.B. (2001), "Strength and durability aspects of calcined kaolin-blended Portland cement mortar and concrete", Cement Concrete Compos., 23(6), 471-478. https://doi.org/10.1016/S0958-9465(00)00091-3.   DOI
111 Widrow, B. and Lehr, M.A. (1990), "30 years of adaptive neural networks: Perceptron, madaline, and backpropagation", Proc. IEEE, 78(9), 1415-1442.   DOI
112 Xu, H., Zhou, J., Asteris, P.G., Armaghani, D.J. and Tahir, M.Md. (2019), "Supervised machine learning techniques to the prediction of tunnel boring machine penetration rate", Appl. Sci., 9, 3715. https://doi.org/10.3390/app9183715.   DOI
113 Xue, X. (2018), "Evaluation of concrete compressive strength based on an improved PSO-LSSVM model", Comput. Concrete, 21(5), 505-511. https://doi.org/10.12989/cac.2018.21.5.505.   DOI
114 Rashid, K. and Rashid, T. (2017), "Fuzzy logic model for the prediction of concrete compressive strength by incorporating green foundry sand", Comput. Concrete, 19(6), 617-623. https://doi.org/10.12989/cac.2017.19.6.617.   DOI
115 Naderpour, H. and Mirrashid, M. (2018), "An innovative approach for compressive strength estimation of mortars having calcium inosilicate minerals", J. Build. Eng., 19, 205-215. https://doi.org/10.1016/j.jobe.2018.05.012.   DOI
116 Iruansi, O., Guadagnini, M., Pilakoutas, K. and Neocleous, K. (2010), "Predicting the shear strength of RC beams without stirrups using Bayesian neural network", Proceedings of the 4th International Workshop on Reliable Engineering Computing, Robust Design-Coping with Hazards, Risk and Uncertainty, Singapore, March.
117 Kadri, E. H., Kenai, S., Ezziane, K., Siddique, R. and De Schutter, G. (2011), "Influence of metakaolin and silica fume on the heat of hydration and compressive strength development of mortar", Appl. Clay Sci., 53(4), 704-708. https://doi.org/10.1016/j.clay.2011.06.008.   DOI
118 Kao, C.H., Wang, C.C. and Wang, H.Y. (2017), "A neural-based predictive model of the compressive strength of waste LCD glass concrete", Comput. Concrete, 19(5), 457-465. https://doi.org/10.12989/cac.2017.19.5.457.   DOI
119 Cavaleri, L., Chatzarakis, G.E., Di Trapani, F.D., Douvika, M.G., Roinos, K., Vaxevanidis, N.M. and Asteris, P.G. (2017), "Modeling of surface roughness in electro-discharge machining using artificial neural networks", Adv. Mater. Res., 6(2), 169-184. https://doi.org/10.12989/amr.2017.6.2.169.   DOI
120 Zhang, G., Patuwo, B.E. and Hu, M.Y. (1998), "Forecasting with artificial neural networks: The state of the art", Int. J. Forecast., 14(1), 35-62. https://doi.org/10.1016/S0169-2070(97)00044-7.   DOI
121 Reddy, T.C.S. (2017), "Predicting the strength properties of slurry infiltrated fibrous concrete using artificial neural network", Front. Struct. Civil Eng., 1-14. https://doi.org/10.1007/s11709-017-0445-3.
122 Adeli, H. (2001), "Neural networks in civil engineering: 1989- 2000", Comput. Aid. Civil Infrastr. Eng., 16, 126-142. https://doi.org/10.1111/0885-9507.00219.   DOI
123 Adhikary, B.B. and Mutsuyoshi, H. (2006), "Prediction of shear strength of steel fiber RC beams using neural networks", Constr. Build. Mater., 20(9), 801-811. https://doi.org/10.1016/j.conbuildmat.2005.01.047.   DOI
124 Akkurt, S., Tayfur, G. and Can, S. (2004), "Fuzzy logic model for the prediction of cement compressive strength", Cement Concrete Res., 34, 1429-1433. https://doi.org/10.1016/j.cemconres.2004.01.020.   DOI
125 Alavi Nezhad Khalil Abad, S.V., Yilmaz, M., Jahed Armaghani, D. and Tugrul, A. (2018), "Prediction of the durability of limestone aggregates using computational techniques", Neur. Comput. Appl., 29(2), 423-433. https://doi.org/10.1007/s00521-016-2456-8.   DOI
126 Alavi, A.H. and Amir Hossein Gandomi, A.H. (2012), "Energybased numerical models for assessment of soil liquefaction", Geosci. Frontiers, 3(4), 541-555. https://doi.org/10.1016/j.gsf.2011.12.008.   DOI
127 Alexandridis, A. (2013), "Evolving RBF neural networks for adaptive soft-sensor design", Int. J. Neural Syst., 23, 1350029. https://doi.org/10.1142/S0129065713500299.   DOI