• 제목/요약/키워드: concrete mix

검색결과 1,199건 처리시간 0.023초

원전 콘크리트 구조물의 중성화 진행 예측 기법에 관한 연구 (A Study on the Prediction Method of Carbonation Process for Concrete Structures of Nuclear Power Plant)

  • 고경택;김도겸;김성욱;조명석;송영철
    • 한국구조물진단유지관리공학회 논문집
    • /
    • 제6권1호
    • /
    • pp.149-158
    • /
    • 2002
  • The carbonation process is affected by both the concrete material properties such as W/C ratio, types of cement and aggregates, admixture characteristics and the environmental factors such as $CO_2$ concentration, temperature, humidity. Based on results of preliminary study on carbonation, this study is to develop a carbonation prediction model by taking account of $CO_2$ concentration, temperature, humidity ad W/C ratio among major factor affecting the carbonation process. And to constitute a model formula which correspond to the mix design of the nuclear power plant, test coefficient that correspond to the design of the nuclear power plant is obtained based on the results of accelerated carbonation test. Also a field coefficient which is obtained based on results of the field examination is included to improve the conformity of the actual structures of nuclear power plant.

Laboratory investigations on the effects of acid attack on concrete containing portland cement partially replaced with ambient-cured alkali-activated binders

  • Ramagiri, Kruthi K.;Patil, Swaraj;Mundra, Harsh;Kar, Arkamitra
    • Advances in concrete construction
    • /
    • 제10권3호
    • /
    • pp.221-236
    • /
    • 2020
  • To reduce the CO2 emissions associated with the manufacture of portland cement (PC), an efficient alternative like an alkali-activated binder (AAB) is the requirement of the industry. To promote the use of AAB in construction activities, a practically implementable mix proportion is required. Owing to the several raw ingredients of AAB concrete and their associated uncertainties, partial replacement of PC by AAB may be adopted instead of complete replacement as per industrial requirements. Hence, the present study aims to determine an optimal proportion for partial replacement of PC with AAB and recommend a technique for it based on site conditions. Three modes of partial replacement are followed: combining all the dry ingredients for AAB and PC followed by the addition of the requisite liquids (PAM); combining the PC and the AAB concrete in two horizontal layers (PAH); and two vertical layers (PAV). 28-day old specimens are exposed to 10% v/v solutions of HCl, H2SO4, and HNO3 to evaluate changes in mechanical, physical, and microstructural characteristics through compressive strength, corrosion depth, and microscopy. Based on deterioration in strength and integrity, PAH or PAV can be adopted in absence of acid attack, whereas PAM is recommended in presence of acid attack.

Strength and abrasion resistance of roller compacted concrete incorporating GGBS and two types of coarse aggregates

  • Saluja, Sorabh;Goyal, Shweta;Bhattacharjee, Bishwajit
    • Advances in concrete construction
    • /
    • 제8권2호
    • /
    • pp.127-137
    • /
    • 2019
  • Roller Compacted Concrete (RCC) is a zero slump concrete consisting of a mixture of cementitious materials, sand, dense graded aggregates and water. In this study, an attempt has been made to investigate the effect of aggregate type on strength and abrasion resistance of RCC made by using granulated blast furnace slag (GGBS) as partial replacement of cement. Mix proportions of RCC were finalized based upon the optimum water content achieved in compaction test. Two different series of RCC mixes were prepared with two different aggregates: crushed gravel and limestone aggregates. In both series, cement was partially replaced with GGBS at a replacement level of 20%, 40% and 60%. Strength Properties and abrasion resistance of the resultant mixes was investigated. Abrasion resistance becomes an essential parameter for understanding the acceptability of RCC for rigid pavements. Experimental results show that limestone aggregates, with optimum percentage of GGBS, perform better in compressive strength and abrasion resistance as compared to the use of crushed gravel aggregates. Observed results are further supported by stoichiometric analysis of the mixes by using basic stoichiometric equations for hydration of major cement compounds.

Optimizing the mix design of pervious concrete based on properties and unit cost

  • Taheri, Bahram M.;Ramezanianpour, Amir M.
    • Advances in concrete construction
    • /
    • 제11권4호
    • /
    • pp.285-298
    • /
    • 2021
  • This study focused on experimental evaluation of mechanical properties of pervious concrete mixtures with the aim of achieving higher values of strength while considering the associated costs. The effectiveness of key parameters, including cement content, water to cement ratio (W/C), aggregate to cement ratio (A/C), and sand replacement was statistically analyzed using paired-samples t-test, Taguchi method and one-way ANOVA. Taguchi analysis determined that in general, the role of W/C was more significant in increasing strength, both compressive and flexural, than cement content and A/C. It was found that increase in replacing percent of coarse aggregate with sand could undermine specimens to percolate water, though one-way ANOVA analysis determined statistically significant increases in values of strength of mixtures. Cost analysis revealed that higher strengths did not necessarily correspond to higher costs; in addition, increasing the cement content was not an appropriate scenario to optimize both strength and cost. In order to obtain the optimal values, response surface method (RSM) was carried out. RSM optimization helped to find out that W/C of 0.40, A/C of 4.0, cement content of about 330 kg/m3 and replacing about 12% of coarse aggregate with sand could result in the best values for strength and cost while maintaining adequate permeability.

콘크리트 믹서 감속기의 진동 평가 (Vibration Evaluation of Concrete Mixer Reducer)

  • 조연상;배명호
    • Tribology and Lubricants
    • /
    • 제35권1호
    • /
    • pp.71-76
    • /
    • 2019
  • The differential planetary gear reducer as a main component of the concrete mixer driving mechanism requires a strong torque to mix concrete compounds. As this component is currently dependent on imports, it is necessary to develop it by conducting a study on vibration analysis and the resonance problem. The noise and vibration of a concrete mixer reducer increase owing to the transmission error of planetary gears, and the damage of components occurs owing to the problems in design and production. In this study, the tooth-passing frequency is calculated to evaluate the noise and vibration of a mixer reducer, and a fast Fourier transform (FFT) analysis is conducted through a vibration test using an acceleration sensor. The vibration of the reducer is measured at three points of input and output of the shaft and planetary gear housing with fixed and variable revolutions per minute. The operating conditions of gears and bearings are evaluated by performing the FFT analysis, and the resonance problem is verified. The results show that No. 1 pinion and ring gears revolve disproportionately. The amplitude values appear high, and the wear of tooth faces occur in tooth-passing frequencies and harmonic components of No. 1 and No. 2 pinion-ring gears. Therefore, we conclude that design changes in the reducer and a correction of tooth profiles are required.

Flexural performance of RC beams incorporating Zinc-rich and epoxy bonding coating layers exposed to fire

  • Tobbala, Dina E.;Rashed, Ahmed S.;Tayeh, Bassam A.
    • Structural Engineering and Mechanics
    • /
    • 제82권2호
    • /
    • pp.163-172
    • /
    • 2022
  • Zinc-rich epoxy (ZRE) is used to overcome corrosion problems in reinforced concrete (RC) beams and coat steel rebars to protect them from humidity and chlorides. An extra coating layer of Sikadur-31 epoxy (SDE) is utilised to increase bond strength because the use of ZRE reduces the bond strength between concrete and steel rebars. However, the low melting point of SDE indicates that concrete specimens are vulnerable to fire. An experimental investigation on flexural performance of RC beams incorporating ZRE-SDE coating of steel rebars that were destroyed by fire is performed in this study. Twenty beams of five concrete mixes with different cementitious contents were tested to compare fire exposure for coated and uncoated rebars of the same beams at room temperature and determine the optimal cementitious content. Scanning electron microscopy (SEM) was also applied to investigate characteristics of fired mixture samples. Results showed that the use of SDE-ZRE at room temperature improves flexural strengths of the five mixes compared with uncoated rebars with percentages ranging from 8.5% to 12.3%. All beams with SDE-ZRE lost approximately 50% of their flexural strength due to firing. Moreover, the mix incorporating SF (silica fume) of 15% and cement content of 400 kg/m3 introduces optimum behaviour compared with other mixes. All results were supported and verified by the SEM analysis and compressive strength of cubic specimens of the same mixes.

비정질강섬유 보강 고강도 콘크리트의 온도별 잔존 역학적 특성 평가 (The residual mechanical properties evaluation according to temperature of the amorphous metallic fiber reinforced high strength concrete)

  • 서동균;김규용;이상규;황의철;유하민;남정수
    • 한국건축시공학회:학술대회논문집
    • /
    • 한국건축시공학회 2020년도 가을 학술논문 발표대회
    • /
    • pp.98-99
    • /
    • 2020
  • This study is aim to assess mechanical properties which is highly related to structural safe and durability of 100MPa high strength concrete mixed with amorphous metallic fiber. All specimens were heated with low velocity heating rate(1℃/min.), residual compressive strength and residual flexural strength was evaluated. The specimens were cooled down to room temperature after heating. As a result, in the case of 100MPa high-strength concrete, the residual compressive strength enhancing effect of amorphous metallic fiber has showed with the mix proportion of fiber. In addition, residual flexural strength showed more regular pattern before 300℃ then residual compressive strength, but simillar decreasing behavior was shown after 300℃ like residual compressive strength. Further study about fiber pull-out behavior and fiber mechanical, chemical property change due to temperature is needed.

  • PDF

모르타르의 내구성에 관한 연구 (Studies on the Durability of Mortars)

  • 고재군
    • 한국농공학회지
    • /
    • 제11권1호
    • /
    • pp.1604-1615
    • /
    • 1969
  • 본(本) 실험(實驗)은 cement mortar를 고산용액에 침지(浸漬)시켜 산(酸)의 작용(作用)에 의(依)한 모르타르의 부식(腐蝕)이 모르타르의 물리적성질(物理的性質)에 미치는 영향(影響)을 구명(究明)하여 보다 내산성(耐酸性) 모르타르 또는 콘크리트의 배합설계(配合設計)에 기초자료(基礎資料)를 제시(提示)하고저 시도(試圖)하였던 바 그 결과(結果)를 요약(要約)하면 다음과 같다. 가. 공시체(供試體)는 5cm 입방체(立方體)의 모르타르로서 그 배합비(配合比)(중량(重量))는 1:1, 1:3, 1:5, 1:7, 1:10의 5종(種)을 제작(製作) 사용(使用)하였다. 나. 물리시험(物理試驗)에서는 재령(材令) 7일(日), 28일(日), 3개월(個月), 6개월(個月)의 압축강도시험(壓縮强度試驗)과 5시간(時間) 자비(煮沸)의 흡수율시험(吸水率試驗)을 하였다. 다. 산성시험(酸性試驗)에서는 0.1N-Hcl 용액(溶液)을 사용(使用)하고 7일간격(日間隔)으로 감량(減量)을 7주간(週間) 계속측정(繼續測定)하였다. 라. 물리적(物理的) 제성질(諸性質)인 배합비(配合比), w/c/비(比), 흡수율(吸水率), 압축강도(壓縮强度) 및 밀도간(密度間)의 상호관계(相互關係)는 다음식(式)으로 표시(表示)되었다. 1. 배합비(配合比)와 흡수율(吸水率)과의 관계(關係) Y=1.036X+13.53 여기서 Y : 흡수율(吸水率)(%), X: 배합비(配合比) 2. 배합비(配合比)와 w/c 비(比)와의 관계(關係) Y=0.214+0.204X 여기서 Y:w/c 비(比), X: 배합비(配合比) 3. w/c 비(比)와 흡수율(吸水率)과의 관계(關係) Y=5.01X+12.53 여기서 Y: 흡수율(吸水率)(%) X: w/c비(比) 4. 밀도(密度)와 흡수율(吸水率)과의 관계(關係) Y=50.6-0.0176X 여기서 Y: 흡수율(吸水率)(%) X: 밀도(密度)($kg/m^3$) 5. 밀도(密度)와 w/c 비(比)와의 관계(關係) Y=5.46-0.0024X 여기서 Y: w/c비(比) X: 밀도(密度)($kg/m^3$) 마. 7주간(週間) 0.1N-HCl 용액(溶液)에 침지후(浸漬後) 감량(減量)의 범위(範圍)는 배합비(配合比) 1:1에서 20.4%(最小), 1:10에서 9%(最大)이였다. 바. 감량(減量)과 물리적(物理的) 제성질(諸性質)과의 관계(關係)는 다음식(式)으로 표시(表示)되었다. 1. 감량(減量)과 배합비(配合比)와의 관계(關係) Y=8.59X+8.63 여기서 Y: 감량(減量)(%) X: 배합비(配合比)

  • PDF

카고메 트러스로 보강한 콘크리트 부재의 전단 보강효과에 관한 기초 연구 (Pilot Study on the Shear Strengthening Effect of Concrete Members Reinforced by Kagome Truss)

  • 김우;강기주;이기열
    • 대한토목학회논문집
    • /
    • 제32권4A호
    • /
    • pp.237-244
    • /
    • 2012
  • 콘크리트는 재료적으로 인장에 취약하고 변형에 취성이 크다는 태생적 단점을 갖고 있다. 콘크리트 조직에 인장에 강한 작은 섬유를 혼합한 섬유보강콘크리트는 이러한 취약점을 보완할 수 있는 좋은 방법으로 간주되었으며, 많은 종류의 섬유재료와 방법들이 제안되었다. 그러나 이 섬유보강콘크리트에도 아직까지 해결하지 못한 문제로서 균질한 배합이 힘들고 높은 체적비를 갖는 섬유 혼입의 어려움 등이 있다. 최근에 새로운 개념의 규칙적 다공질 금속(periodic cellular metal)이 개발되어 기계 분야에 많이 적용되고 있는 철선으로 직조된 카고메 트러스가 있다. 이 논문은 기존 강섬유보강콘크리트의 현실적 문제점을 해결하기 위한 방법의 일환으로 카고메 트러스의 적용 가능성을 검토하기 위한 기초 실험 연구 결과를 정리한 것이다. 3종류의 카고메 트러스로 보강된 실험체와 동일한 제원의 수직스터럽으로 보강된 보 실험 결과와 비교하였다. 그 결과, 카고메 트러스 보강 실험체에서는 강도와 연성이 보통 스터럽 보강 보 보다 더 우수한 결과를 나타냈으며, 복부 보강재로서 우수한 기능을 할 수 있는 것으로 판명되었다.

경량골재 콘크리트의 배합설계 및 목표 콘크리트 기건밀도의 결정 (Mix Design of Lightweight Aggregate Concrete and Determination of Targeted Dry Density of Concrete)

  • 양근혁
    • 한국건축시공학회지
    • /
    • 제13권5호
    • /
    • pp.491-497
    • /
    • 2013
  • 본 연구의 목적은 구조용 경량골재 콘크리트의 배합설계 절차를 확립하고, 설계강도로부터 콘크리트 목표 기건밀도의 범위를 평가하는 것이다. 본 절차를 확립하기 위해, 기존 347 실험데이터의 비선형 회귀분석 및 두 경계조건 (절대용적 및 콘크리트 기건밀도)에 기반한 수학적 모델을 구성하였다. 배합설계 모델제시 결과, 설계강도에 대한 물-시멘트비와 콘크리트 기건밀도는 굵은골재 체적비의 증가와 함께 감소하는데, 이 경향은 모래 경량보다는 전 경량골재 콘크리트에서 현저하였다. 경량골재 콘크리트의 기건단위는 설계강도에 따라 임의의 범위에서 설정되어야 하는데, 이는 제시된 모델에 의해 평가될 수 있다.