Browse > Article
http://dx.doi.org/10.12989/acc.2020.10.3.221

Laboratory investigations on the effects of acid attack on concrete containing portland cement partially replaced with ambient-cured alkali-activated binders  

Ramagiri, Kruthi K. (Department of Civil Engineering, BITS Pilani-Hyderabad Campus)
Patil, Swaraj (Department of Civil Engineering, Politecnico di Milano)
Mundra, Harsh (Walter P Moore LLC)
Kar, Arkamitra (Department of Civil Engineering, BITS Pilani-Hyderabad Campus)
Publication Information
Advances in concrete construction / v.10, no.3, 2020 , pp. 221-236 More about this Journal
Abstract
To reduce the CO2 emissions associated with the manufacture of portland cement (PC), an efficient alternative like an alkali-activated binder (AAB) is the requirement of the industry. To promote the use of AAB in construction activities, a practically implementable mix proportion is required. Owing to the several raw ingredients of AAB concrete and their associated uncertainties, partial replacement of PC by AAB may be adopted instead of complete replacement as per industrial requirements. Hence, the present study aims to determine an optimal proportion for partial replacement of PC with AAB and recommend a technique for it based on site conditions. Three modes of partial replacement are followed: combining all the dry ingredients for AAB and PC followed by the addition of the requisite liquids (PAM); combining the PC and the AAB concrete in two horizontal layers (PAH); and two vertical layers (PAV). 28-day old specimens are exposed to 10% v/v solutions of HCl, H2SO4, and HNO3 to evaluate changes in mechanical, physical, and microstructural characteristics through compressive strength, corrosion depth, and microscopy. Based on deterioration in strength and integrity, PAH or PAV can be adopted in absence of acid attack, whereas PAM is recommended in presence of acid attack.
Keywords
alkali-activated binder; mixing proportion; acid resistance; microstructure;
Citations & Related Records
Times Cited By KSCI : 1  (Citation Analysis)
연도 인용수 순위
1 Madavarapu, S.B. (2014), "FTIR analysis of alkali activated slag and fly ash using deconvolution techniques", M.S. Thesis, Arizona State University, Tempe, AZ.
2 Mazhar, S. and GuhaRay, A. (2020), "Stabilization of expansive clay by fibre-reinforced alkali-activated binder: an experimental investigation and prediction modelling", Int. J. Geotech. Eng., 1-17. doi.org/10.1080/19386362.2020.1775358.
3 Monteny, J., Vinke, E., Beeldens, A., DeBelie, N., Taerwe, L., Van Gemert, D. and Verstraete, W. (2000), "Chemical, microbiological, and in situ methods for biogenic sulfuric acid corrosion of concrete", Cement Concrete Res., 304, 623-634. https://doi.org/10.1016/S0008-8846(00)00219-2.
4 Nath, P. and Sarker, P.K. (2014), "Effect of GGBFS on setting, workability and early strength properties of fly ash geopolymer concrete cured in ambient condition", Constr. Build. Mater., 66, 163-171. https://doi.org/10.1016/j.conbuildmat.2014.05.080.   DOI
5 Oelkers, E.H. and Schott, J. (1995), "Experimental study of anorthite dissolution and the relative mechanism of feldspar hydrolysis", Geochim. Cosmochim. Acta, 59(24), 5039-5053. https://doi.org/10.1016/0016-7037(95)00326-6.   DOI
6 Pacheco-Torgal, F., Gomes, J. and Jalali, S. (2010), "Durability and environmental performance of alkali-activated tungsten mine waste mud mortars", J. Mater. Civil Eng., 22(9), 897-904. https://doi.org/10.1061/(ASCE)MT.1943-5533.0000092.   DOI
7 Palacios, M. and Puertas, F. (2011), "Effectiveness of mixing time on hardened properties of water glass activated slag pastes and mortars", ACI Mater. J., 108(1), 73-78.
8 Pavlik, V. (1994), "Corrosion of hardened cement paste by acetic and nitric acids part II: formation and chemical composition of the corrosion products layer", Cement Concrete Res., 24(8), 1495-1508. https://doi.org/10.1016/0008-8846(94)90164-3.   DOI
9 Provis, J.L. and van Deventer, J.S.J. (2014), Alkali Activated Materials: State-of-the-Art Report, RILEM TC 224-AAM, Springer, Dordrecht,.
10 Provis, J.L., Bilek, V., Buchwald, A., Dombrowski-Daube, K. and Varela, B. (2014) "Durability and testing - physical processes", Alkali Activated Materials: State-of-the-Art Report, RILEM TC 224-AAM, Eds. Provis, J.L. and van Deventer J. S. J., Springer, Dordrecht, Netherlands.
11 Provis, J.L., Palomo, A. and Shi, C. (2015), "Advances in understanding alkali-activated materials", Cement Concrete Res., 78, 110-125. https://doi.org/10.1016/j.cemconres.2015.04.013.   DOI
12 Ramagiri, K.K. and Kar, A. (2019), "Effect of precursor combination and elevated temperatures on the microstructure of alkali-activated binder", ICJ, 93(10), 34-43. https://doi.org/10.1016/j.matpr.2020.01.093.
13 Ramagiri, K.K., Chauhan, D., Gupta, S., Kar, A. and Adak, D. (2020), "Evaluation of structural performance of concrete with ambient-cured alkali-activated binders", Proceedings of SECON'19, SECON 2019, Lecture Notes in Civil Engineering, Springer, 46, May.
14 Rangan, B. (2010), "Design and manufacture of fly-ash based geopolymer concrete", Concr. Aust., 34(2), 37-43.
15 Rangan, B.V. (2008), "Low-calcium fly-ash-based geopolymer concrete", Concrete Construction Engineering Handbook, Ed. Nawy, E.G., CRC Press, New York.
16 Shekhovtsova, J., Kovtun, M. and Kearsley, E.P. (2015), "Evaluation of short-and long-term properties of heat-cured alkali-activated fly ash concrete", Mag. Concrete Res., 67(16), 897-905. https://doi.org/10.1680/macr.14.00377.   DOI
17 Song, X., Marosszeky, M., Brungs, M. and Munn, R. (2005), "Durability of fly ash based geopolymer concrete against sulphuric acid attack", 10th International Conference on the Durability of Building Materials and Components, Lyon, France.
18 Temuujin, J., Minjigmaa, A., Lee, M., Chen-Tan, N. and Van Riessen, A. (2011), "Characterisation of class F fly ash geopolymer pastes immersed in acid and alkaline solutions", Cement Concrete Compos., 33(10), 1086-1091. https://doi.org/10.1016/j.cemconcomp.2011.08.008.   DOI
19 Wallah, S.E. and Rangan. B.V. (2006), "Low-calcium fly ash-based geopolymer concrete: long-term properties", Curtin University of Technology, Perth, Australia.
20 Rashad, A.M. (2013), "Properties of alkali-activated fly ash concrete blended with slag", Iran. J. Mater. Sci. Eng., 10(1), 57-64.
21 Shi, C. (2003), "Corrosion resistance of alkali-activated slag cement", Adv. Cement Res., 15(2), 77-81. https://doi.org/10.1680/adcr.2003.15.2.77.   DOI
22 Shi, C. and Stegmann, J.A. (2000), "Acid corrosion resistance of different cementing materials", Cement Concrete Res., 30(5), 803-808. https://doi.org/10.1016/S0008-8846(00)00234-9.   DOI
23 Yip, C.K., Lukey, G.C. and Van Deventer, J.S. (2005), "The coexistence of geopolymeric gel and calcium silicate hydrate at the early stage of alkaline activation", Cement Concrete Res., 35(9), 1688-1697. https://doi.org/10.1016/j.cemconres.2004.10.042.   DOI
24 Xie, J., Wang, J., Rao, R., Wang, C. and Fang, C. (2019), "Effects of combined usage of GGBS and fly ash on workability and mechanical properties of alkali activated geopolymer concrete with recycled aggregate", Compos. Part B: Eng., 164, 179-190. https://doi.org/10.1016/j.compositesb.2018.11.067.   DOI
25 Ye, H. and Huang, L. (2020)", Degradation mechanisms of alkali-activated binders in sulfuric acid: The role of calcium and aluminum availability", Constr. Build. Mater., 246, 118477. https://doi.org/10.1016/j.conbuildmat.2020.118477.   DOI
26 Yip, C., Lukey, G.C., Provis, J.L. and van Deventer, J.S.J. (2008), "Effect of calcium silicate sources on geopolymerization", Cement Concrete Res., 38(4), 554-564. https://doi.org/10.1016/j.cemconres.2007.11.001.   DOI
27 Zhang, W., Yao, X., Yang, T. and Zhang, Z. (2018), "The degradation mechanisms of alkali-activated fly ash/slag blend cements exposed to sulphuric acid", Constr. Build. Mater., 186, 1177-1187. https://doi.org/10.1016/j.conbuildmat.2018.08.050.   DOI
28 Aiken, T.A., Kwasny, J., Sha, W. and Soutsos, M.N. (2018), "Effect of slag content and activator dosage on the resistance of fly ash geopolymer binders to sulfuric acid attack", Cement Concrete Res., 111, 23-40. https://doi.org/10.1016/j.cemconres.2018.06.011.   DOI
29 Zhao, M., Zhang, X. and Zhang, Y.J. (2011), "Resistance of hydrated cement paste to acid attack and kinetics analysis of corrosion", Adv. Mater. Res., 163, 3133-3137. https://doi.org/10.4028/www.scientific.net/AMR.163-167.3133.   DOI
30 ACI Committee 211 (Reapproved 2009), Standard Practice for Selecting Proportions for Normal, Heavyweight, and Mass Concrete (ACI 211.1-91), American Concrete Institute.
31 ASTM C311/C311M (2018), Standard Test Methods for Sampling and Testing Fly Ash or Natural Pozzolans for Use in Portland-Cement Concrete, ASTM International, West Conshohocken, PA.
32 Allahverdi, A. and Skvara, F. (2005), "Sulfuric acid attack on hardened paste of geopolymer cements. Part 1. Mechanism of corrosion at relatively high concentrations", Ceram.-Silik., 49(4), 225-229.
33 Allahverdi, A. and Skvara, F. (2006), "Sulfuric acid attack on hardened paste of geopolymer cements-part 2. Corrosion mechanism at mild and relatively low concentrations", Ceram.-Silik., 50(1), 1-4.
34 Askarian, M., Tao, Z., Adam, G. and Samali, B. (2018), "Mechanical properties of ambient cured one-part hybrid OPC-geopolymer concrete", Constr. Build. Mater., 186, 330-337. https://doi.org/10.1016/j.conbuildmat.2018.07.160.   DOI
35 ASTM C33/C33M (2017), Standard Specification for Concrete Aggregates, ASTM International, West Conshohocken, PA.
36 ASTM C39/C39M (2013), Standard Test Method for Compressive Strength of Cylindrical Concrete Specimens, ASTM International, West Conshohocken, PA.
37 ASTM C494 (2013), Specification for Chemical Admixtures for Concrete, ASTM International, West Conshohocken, PA.
38 ASTM C618 (2013), Standard Specification for Coal Fly Ash and Raw or Calcined Natural Pozzolan for Use in Concrete, ASTM International, West Conshohocken, PA.
39 Bakharev, T., Sanjayan, J.G. and Cheng, Y.B. (2003), "Resistance of alkali-activated slag concrete to acid attack", Cement Concrete Res., 33(10), 1607-1611. https://doi.org/10.1016/S0008-8846(03)00125-X.   DOI
40 ASTM C989 (2013), Standard Specification for Slag Cement for Use in Concrete and Mortars, ASTM International, West Conshohocken, PA.
41 Bernal, S.A., Rodriguez, E.D., Mejia de Gutierrez, R. and Provis, J.L. (2012), "Performance of alkali-activated slag mortars exposed to acids", J. Sustain. Cement Bas. Mater., 1(3), 138-151. https://doi.org/10.1080/21650373.2012.747235.   DOI
42 Central Electricity Authority (CEA) (2017), Report on Fly Ash Generation at Coal/lignite Based Thermal Power Stations and its Utilization in the Country for The Year 2016-17, New Delhi.
43 Dassekpo, J.B.M., Zha, X., Zhan, J. and Ning, J. (2017), "The effects of the sequential addition of synthesis parameters on the performance of alkali activated fly ash mortar", Resul. Phys., 7, 1506-1512. https://doi.org/10.1016/j.rinp.2017.04.019.   DOI
44 De Ceukelaire, L. (1992), "The effects of hydrochloric acid on mortar", Cement Concrete Res., 22(5), 903-914. https://doi.org/10.1016/0008-8846(92)90114-B.   DOI
45 Diaz-Loya, E.I., Allouche, E. and Vaidya, S. (2011), "Mechanical properties of fly-ash-based geopolymer concrete", ACI Mater. J., 108(3), 300-306.
46 Ding, Y., Dai, J.G. and Shi, C.J. (2016), "Mechanical properties of alkali-activated concrete: A state-of-the-art review", Constr. Build. Mater., 127, 68-79. https://doi.org/10.1016/j.conbuildmat.2016.09.121.   DOI
47 Duxson, P. (2009), "Geopolymer precursor design", Geopolymers: Structure, Processing, Properties and Industrial Applications, Eds. Provis, J.L. and van Deventer, J.S.J., Boca Raton, Florida.
48 Hardjito, D. and Rangan, B.V. (2005), "Development and properties of low-calcium fly ash-based geopolymer concrete", Curtin University of Technology Research Report GC1, Curtin University, Perth, Australia.
49 Gomez, J.C., Calvet, N., Starace, A.K. and Glatzmaier, G.C. (2013), "Ca $(NO_{3})_{2}-NaNO_{3}-KNO_{3}$ molten salt mixtures for direct thermal energy storage systems in parabolic trough plants", J. Sol. Energy Eng., 135(2), 021016. https://doi.org/10.1115/1.4023182.   DOI
50 Gu, L., Visintin, P. and Bennett, T. (2018), "Evaluation of accelerated degradation test methods for cementitious composites subject to sulfuric acid attack; application to conventional and alkali-activated concretes", Cement Concrete Compos., 87, 187-204. https://doi.org/10.1016/j.cemconcomp.2017.12.015.   DOI
51 IS 516-1959 (2018), Methods of Tests for Strength of Concrete, Bureau of Indian Standards, New Delhi, India.
52 Ismail, I., Bernal, S.A., Provis, J.L., San Nicolas, R., Hamdan, S. and van Deventer, J.S. (2014), "Modification of phase evolution in alkali-activated blast furnace slag by the incorporation of fly ash", Cement Concrete Compos., 45, 125-135. https://doi.org/10.1016/j.cemconcomp.2013.09.006.   DOI
53 Junaid, M.T. (2017), "Properties of ambient cured blended alkali activated cement concrete", IOP Conf. Ser.: Mater. Sci. Eng., 264(1), 012004.   DOI
54 Junaid, M.T., Kayali, O., Khennane, A. and Black, J. (2015), "A mix design procedure for low calcium alkali activated fly ash-based concretes", Constr. Build. Mater., 79, 301-310. https://doi.org/10.1016/j.conbuildmat.2015.01.048.   DOI
55 Fang, G., Ho, W.K., Tu, W. and Zhang, M. (2018), "Workability and mechanical properties of alkali-activated fly ash-slag concrete cured at ambient temperature", Constr. Build. Mater., 172, 476-487. https://doi.org/10.1016/j.conbuildmat.2018.04.008.   DOI
56 Ko, L.S., Belena, I., Duxson, P., Kavalerova, E., Krivenko, P.V., Ordonez, L.M., Tagnit-Hamou, A. and Winnefeld, F. (2014), "AAM concretes: standards for mix design/formulation and early-age properties", Alkali Activated Materials: State-of-the-Art Report, RILEM TC 224-AAM, Eds. Provis, J.L. and van Deventer, J.S.J., Springer, Dordrecht, Netherlands.
57 Kani, E.N., Allahverdi, A. and Provis, J.L. (2018), "Calorimetric study of geopolymer binders based on natural pozzolan", J. Therm. Anal. Calorim., 127(3), 2181-2190. https://doi.org/10.1007/s10973-016-5850-7.   DOI
58 Kar, A. (2013) "Characterizations of concretes with alkali-activated binder and correlating their properties from micro-to specimen level", PhD Thesis, West Virginia University, Morgantown, West Virginia.
59 Kar, A., Ray, I., Unnikrishnan, A. and Halabe, U. B. (2016), "Prediction models for compressive strength of concrete with alkali-activated binders", Comput. Concrete, 17(4), 523-539. http://dx.doi.org/10.12989/cac.2016.17.4.523.   DOI
60 Kumar, S., Kumar, R. and Mehrotra, S.P. (2010), "Influence of granulated blast furnace slag on the reaction, structure and properties of fly ash based geopolymer", J. Mater. Sci., 45(3), 607-615. https://doi.org/10.1007/s10853-009-3934-5.   DOI
61 Lee, N.K. and Lee, H.K. (2016), "Influence of the slag content on the chloride and sulfuric acid resistances of alkali-activated fly ash/slag paste", Cement Concrete Compos., 72, 168-179. https://doi.org/10.1016/j.cemconcomp.2016.06.004.   DOI
62 Lloyd, R.R., Provis, J.L. and van Deventer, J.S.J. (2012), "Acid resistance of inorganic polymer binders. 1. Corrosion rate", Mater. Struct., 45(1-2), 1-14. https://doi.org/10.1617/s11527-011-9744-7.   DOI
63 Luukkonen, T., Abdollahnejad, Z., Yliniemi, J., Kinnunen, P. and Illikainen, M. (2018), "One-part alkali-activated materials: a review", Cement Concrete Res., 103, 21-34. https://doi.org/10.1016/j.cemconres.2017.10.001.   DOI