• Title/Summary/Keyword: concrete mix

Search Result 1,199, Processing Time 0.026 seconds

Effect of hybrid polypropylene-steel fibres on strength characteristics of UHPFRC

  • Nuaklong, Peem;Chittanurak, Jithaporn;Jongvivatsakul, Pitcha;Pansuk, Withit;Lenwari, Akhrawat;Likitlersuang, Suched
    • Advances in concrete construction
    • /
    • v.10 no.1
    • /
    • pp.1-11
    • /
    • 2020
  • This study intends to produce an ultra-high performance fibre reinforced concrete (UHPFRC) made with hybrid fibres (i.e., steel and polypropylene). Compressive and tensile strength characteristics of the hybrid fibres UHPFRC are considered. A total of 14 fibre-reinforced composites (FRCs) with different fibre contents or types of fibres were prepared and tested in order to determine a suitable hybrid fibre combination. The compressive and tensile strengths of each concrete at 7 days were determined. The results showed that a hybrid mix of micro-polypropylene and steel fibres exhibited good compromising performances and is the ideal reinforcement mixture in a strong, cost-effective UHPFRC. In addition, maximum compressive strength of 167 MPa was achieved for UHPFRC using 1.5% steel fibres blended with 0.5% macro-polypropylene fibres.

Predicting the compressive strength of self-compacting concrete containing fly ash using a hybrid artificial intelligence method

  • Golafshani, Emadaldin M.;Pazouki, Gholamreza
    • Computers and Concrete
    • /
    • v.22 no.4
    • /
    • pp.419-437
    • /
    • 2018
  • The compressive strength of self-compacting concrete (SCC) containing fly ash (FA) is highly related to its constituents. The principal purpose of this paper is to investigate the efficiency of hybrid fuzzy radial basis function neural network with biogeography-based optimization (FRBFNN-BBO) for predicting the compressive strength of SCC containing FA based on its mix design i.e., cement, fly ash, water, fine aggregate, coarse aggregate, superplasticizer, and age. In this regard, biogeography-based optimization (BBO) is applied for the optimal design of fuzzy radial basis function neural network (FRBFNN) and the proposed model, implemented in a MATLAB environment, is constructed, trained and tested using 338 available sets of data obtained from 24 different published literature sources. Moreover, the artificial neural network and three types of radial basis function neural network models are applied to compare the efficiency of the proposed model. The statistical analysis results strongly showed that the proposed FRBFNN-BBO model has good performance in desirable accuracy for predicting the compressive strength of SCC with fly ash.

Estimation of Critical Chloride Threshold Value in Concrete by the Accelerated Corrosion Test

  • Vicho, Victor C.;Bae, Su-Ho;Park, Jae-Im;Lee, Kwang-Myong;Kim, Jee-Sang;Jung, Sang-Hwa
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2006.05b
    • /
    • pp.201-204
    • /
    • 2006
  • It should be noted that the critical chloride threshold level is not considered to be a unique value for all conditions. This value is dependent on concrete mix proportions, cement type and constituents, presence of admixtures, environmental factors, reinforcement surface conditions, and other factors. In this study, the accelerated corrosion test for reinforcing steel was conducted by electrochemical and cyclic wet and dry seawater method, respectively and during the test, corrosion monitoring by half-cell potential method was carried out to detect the time to initiation of corrosion for individual test specimen. For this purpose, lollypop and right hexahedron test specimens were made for 31%, 42%, and 50% of W/C, respectively, and then the accelerated corrosion test for reinforcing steel was executed. It was observed from the test that the time to initiation of corrosion was found to be different with the water-cement ratio and accelerated corrosion test method, respectively and the critical chloride threshold values were found to range from 0.91 to $1.47kg/m^3$.

  • PDF

A Study on the Optimum Mix Proportion for Early Strength of Concrete in the Upper Layers of High Rise Building (Part II - 80MPa) (초고층 빌딩용 상층부 콘크리트의 조기강도 확보를 위한 최적배합 도출에 관한 연구 (Part II - 80MPa를 중심으로))

  • Jeon, In-Ki;Park, Yong-Kyu;Lee, Joo-Hun;Choi, Myung-Hwa;Yoon, Gi-Won
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2008.11a
    • /
    • pp.325-328
    • /
    • 2008
  • Recently increasing interest in high-rise building around the world for more than 100 floor, the trend is the increasing use of high-strength and high-flowable concrete so as of productivity improvements and cost savings to improve the performance of the early strength development. This study is to reach the optimal combination by reviewing the performance of high-rise building which is required. The results, lower the ratio of W/B was an increase in compressive strength and early strength in the use of admixture decreased in the combination of higher replacement ratio of admixture.

  • PDF

A Study on Shear-Fatigue Behavior of New Polymer Reinforced Concrete Beams (신(新)폴리머 철근(鐵筋)콘크리트보의 전단피로(剪斷疲勞) 거동(擧動)에 관(關)한 연구(研究))

  • Kwak, Kae Hwan;Park, Jong Gun;Jang, Ki Woong
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.13 no.3
    • /
    • pp.35-44
    • /
    • 1993
  • The objective of this study is aimed at developing a new class of polymer concrete, in which hydration of cement and curing of a thermosetting resin can take place simultaneously during the mixing of concrete components. For the selected mix-proportion of the new polymer, the physical and mechanical properties needed for designs are presented. These important properties are compressive strength, flexural strength, split tensile strength, direct strength, fatigue characteristics and fracture parameters. The observed properties are always compared with conventional concrete to serve as reference for engineer in deciding or selecting the proper materials for their projects, and shore protecting structure.

  • PDF

A Study on Development of New Repair Method by High Pressure Spray (고압 스프레이 방식 신보수공법의 개발에 관한 연구)

  • Woo, Jong-Tae;Jang, Suk-Hwan;Kim, Yong-Chul
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.7 no.1
    • /
    • pp.279-288
    • /
    • 2003
  • This study is the development of method on repairing concrete structure for progressing the durability of reinforced concrete. This method is wet spray method which compress and conduct mortar pre-mixed with polymer powder to hose by high pressure pump and spray it on the section of concrete structure through nozzle made specially. Characters of this method are that materials are selected with the sort of structure and the cause of deterioration and macro pores are removed in repaired section by conducting with high pressure and spraying with high velocity for progressing the durability of concrete structure. This study has carried out that the minimum capacity of rebound was measured with various condition and physical properties of sample made by spray method were estimated in comparing with sample made by previous hand method. Also, properties of long-term have carried out after this method was applied on site. According to experimental study, the capacity of rebound showed below 5% and physical properties of sample made by spray method were superior to that of sample made by hand method and physical and durable properties of long-term showed excellence.

Nano-Silica effect on the physicomechanical properties of geopolymer composites

  • Khater, H.M.
    • Advances in nano research
    • /
    • v.4 no.3
    • /
    • pp.181-195
    • /
    • 2016
  • Addition of nano-$SiO_2$ (NS) to geopolymer composites has been studied through measurement of compressive strengths, FTIR and XRD analysis. Alumino-silicate materials are coarse aggregate included waste concrete and demolished walls with its cementing binder, cement kiln dust (CKD) used and can possess a pronouncing activation for the geopolymer reaction resulting from the high alkali contents within. Materials prepared at water/binder ratios in a range of 0.30: 0.40 under curing of $40^{\circ}C$ and 100% Relative Humidity (R.H.), while the used activator is sodium hydroxide in the ratio of 2 wt. %. First, CKD is added in the ratio from 10 up to 50 wt., %, and the demolished walls was varied depending on the used CKD content, while using constant ratio of waste concrete (40 wt., %). Second step, depending on the optimum CKD ratio resulted from the first one (40 wt. %), so the control geopolymer mix composed of cement kiln dust, demolished walls and waste concrete in the ratio (40:20:40, wt %). Nano-silica partially replaced waste concrete by 1 up to 8%. Results indicated that, compressive strengths of geopolymer mixes incorporating nano-silica were obviously higher than those control one, especially at early ages and specially with 3%NS.

Raffles City in Hangzhou China -The Engineering of a 'Vertical City' of Vibrant Waves-

  • Wang, Aaron J.
    • International Journal of High-Rise Buildings
    • /
    • v.6 no.1
    • /
    • pp.33-47
    • /
    • 2017
  • This mixed-use Raffles City (RCH) development is located near the Qiantang River in Hangzhou, the capital of Zhejiang province, located southwest of Shanghai, China. The project incorporates retail, offices, housing, and hotel facilities and marks the site of a cultural landscape within the Quianjiang New Town Area. The project is composed of two 250-meter-tall twisting towers with a form of vibrant waves, along with a commercial podium and three stories of basement car parking. It reaches a height of 60 stories, presenting views both to and from the Qiantang River and West Lake areas, with a total floor area of almost 400,000 square meters. A composite moment frame plus concrete core structural system was adopted for the tower structures. Concrete filled steel tubular (CFT) columns together with steel reinforced concrete (SRC) beams form the outer moment frame of the towers' structure. The internal slabs and floor beams are of reinforced concrete. This paper presents the engineering design and construction of this highly complex project. Through comprehensive discussion and careful elaboration, some conclusions are reached, which serve as a reference guide for the design and construction of similar free-form, hybrid, mix-use buildings.

Portland cement structure and its major oxides and fineness

  • Nosrati, A.;Zandi, Y.;Shariati, M.;Khademi, K.;Aliabad, M. Darvishnezhad;Marto, A.;Mu'azu, M.A.;Ghanbari, E.;Mahdizadeh, M.B.;Shariati, A.;Khorami, M.
    • Smart Structures and Systems
    • /
    • v.22 no.4
    • /
    • pp.425-432
    • /
    • 2018
  • Predicting the compressive strength of concrete has been considered as the initial phase across the cement production processing. The current study has focused on the integration of the concrete compressive strength in 28 days with the mix of the major oxides and fine aggregates as an experimental formula through the use of two types of Portland cement resulting the compressive strength of the concrete highly dependent on time.

Chracteristics of Cement Mortar Mixed with Incinerated Urban Solid Waste (도시 쓰레기 소각재를 혼입한 시멘트 모르타르의 특성)

  • Chang, Chun-Ho
    • Journal of Environmental Science International
    • /
    • v.19 no.5
    • /
    • pp.639-646
    • /
    • 2010
  • Differently from fly ash, the bottom ash produced from incinerated urban solid waste has been treated as an industrial waste matter, and almost reclaimed a tract form the sea. If this waste material is applicable to foam concrete as an fine aggregate, however, it may be worthy of environmental preservation by recycling of waste material as well as reducing self-weight of high-rising structure and long-span bridge. This research has an objective of evaluating the effects of application of bottom ash on the mechanical properties of foam concrete. Thus, the ratio of bottom ash to cement was selected as a variable for experiment and the effect was tested by compression strength, flexural strength, absorption ratio, density, expansion factor. It can be observed from experiments that the application ratios have different effects on the material parameters considered in this experiment, thus major relationship between application ratio and each material parameter were finally introduced. The result of this study can be applied to decide a optimal mix design proportion of foam light-weight concrete while bottom ash is used as an fine aggregate of the concrete.