• Title/Summary/Keyword: concrete lining

Search Result 322, Processing Time 0.021 seconds

Assessment of long-term behaviour of a shallow tunnel in clay till

  • Wang, Z.;Wong, R.C.K.;Heinz, H.
    • Geomechanics and Engineering
    • /
    • v.2 no.2
    • /
    • pp.107-123
    • /
    • 2010
  • Ground settlements and pore pressure changes were monitored around a shallow tunnel constructed in clay till during the excavation and primary lining installation. The settlements above the tunnel continued to develop for up to 100 days after the primary lining installation. Triaxial compression tests were carried out to estimate the short-term and long-term deformation characteristics of the till. Numerical simulation was conducted to history match the field measurements, and thus, to quantify the settlements induced by ground stress relief, consolidation and creep. It was found that the surface settlements due to ground stress relief, consolidation and creep are 17, 12 and 71% of total settlement (about 44 mm), respectively. In addition, early installation of rigid concrete lining could be an effective means to reduce the settlement due to creep.

Development of Vision-Based Inspection System for Detecting Crack on the Lining of Concrete Tunnel (비젼센서를 이용한 콘크리트 터널 라이닝 균열검사 시스템의 개발)

  • 고봉수;조남규
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.20 no.12
    • /
    • pp.96-104
    • /
    • 2003
  • To assess tunnel safety, cracks in tunnel lining are measured by inspectors who observe cracks with their eyes. A manual inspection is, however, slow and subjective. This paper, therefore, proposes vision-based inspection system for measuring cracks in the tunnel lining that inspects cracks fast and objective. The system is consisted of an on-vehicle system and a lab system. An on-vehicle system acquires image data with line CCD camera. A lab system extracts crack then inform their thickness, length and orientation by using image processing. To improve accuracy of crack recognition the geometric properties of a crack was applied to image processing. The proposed system were verified with experiments in both laboratory and field environment.

Fire resistance assessment of segment lining with PP fiber amount (PP섬유 혼입량에 따른 세그먼트 라이닝의 화재저항성 평가)

  • Choi, Soon-Wook;Kang, Tae-Ho;Lee, Chulho;Kim, Hae Song;Ahn, Byoungcheol;Chang, Soo-Ho
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.23 no.5
    • /
    • pp.303-314
    • /
    • 2021
  • With the high quality/high stiffness/high strength of segment lining, segment lining is increasingly used as the final lining of the tunnel. Precast concrete lining has higher quality and strength than field concrete. Paradoxically, this contributes to greater damage to concrete in the event of a fire in a tunnel. In this study, tests were conducted to determine the fire resistance performance of segment linings according to fiber content in fire resistance methods using synthetic fibers such as PP fibers. As a result, it was confirmed that fire resistance performance required by the relevant project can be secured when using 1.5 kg/m3 of PP fiber. In addition, comparison of the results of PP fibers with PET, a similar synthetic fiber, showed better fire resistance performance than when PP fibers were used.

A study on the establishment of stress limit values of management monitoring in tunnel (터널 유지관리계측의 응력 관리기준치 설정에 관한 연구)

  • Woo, Jong-Tae
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.17 no.1
    • /
    • pp.25-32
    • /
    • 2015
  • This study analyzed a monitoring data, based on the initial limit values of monitoring in subway, of concrete lining stress and reinforcement stress. The data is obtained from 7 sections of the Seoul metropolitan subway line No 6, 7, and 9 in about 5 years. Also, a research is performed to set up the limit values of management monitoring, which will be applied to management monitoring in tunnel, through comparing the limit values of overseas management monitoring data and that of domestic management monitoring data. And the result obtained from comparison shows that the safety phase is 60% of allowable stress, the attention phase is 80% of allowable stress and the precision analysis phase is 100% of allowable stress. Also, we presented a method of management monitoring by the absolute value which can be easily applied in practical affairs.

Evaluation of shield TBM segment acting load through monitoring data back analysis (계측 데이터 역해석을 통한 쉴드 TBM 터널 세그먼트의 작용하중 평가)

  • Lee, Gyu-Phil;Chang, Soo-Ho;Bae, Gyu-Jin;Choi, Soon-Wook;Ahn, Chang-Yoon
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.19 no.6
    • /
    • pp.905-913
    • /
    • 2017
  • To design segment lining, loads such as self weight, vertical load, horizontal load, ground reaction, water pressure, backfill grouting pressure et al. have to be considered. Earth pressure and water pressure are the major factor to design segment lining such as concrete strength, segment thickness and amount of rebar et al. To analysis earth pressure and water pressure acting on segment lining, filed monitoring and back analysis are performed in this study.

A Study of Structural Safety Diagnosis using Frequency Domain Analysis of Impact-Echo Method (충격반향기법의 주파수영역 해석을 이용한 구조물 안전진단에 관한 연구)

  • 안제훈;서백수
    • Tunnel and Underground Space
    • /
    • v.14 no.1
    • /
    • pp.35-42
    • /
    • 2004
  • Impact-echo is a method for non-destructive testing of concrete structure. This method is based on the use of impact-generated stress wave which is propagated and reflected from internal flaws within concrete structure and external surface. In this study, we performed non-destructive testing using impact-echo methods for safety diagnosis of civil engineering and building structures. There are testing cases for the three models having one-dimensional form ; The first case is the measurement of thickness change of the model, the second is the detection of cavity in the model, and the third is the predictions of the lining thickness and the position of the cavity under tunnel lining condition.

Evaluation of fire-proofing performance of reinforced concrete tunnel lining coated by newly developed material (신개발 내화재료에 피복된 철근콘크리트 터널라이닝의 내화성능평가)

  • Park, Hae-Genn;Kim, Jang-Ho Jay
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.10 no.4
    • /
    • pp.329-336
    • /
    • 2008
  • Efficient traffic network is required in urban area for good living condition. However, dense traffic network creates traffic jam and gives bad influences to the ground environment. Therefore, advanced use of underground and tunnel is required. But, in the last 20 years many tunnel fire accidents have occurred all over the world. Increase of tunnels and increase of traffics result in increase of tunnel fire. Tunnel fire creates damage to people and to the tunnel structure. Also, tunnel fire creates a big economical loss. In a mountain tunnel, the stability of the tunnel will not be disturbed by fire although the tunnel lining will get a severe damage. However, in a shield tunnel or immersed tube tunnel, cut and cover tunnel, there is a high possibility that tunnel itself will collapse by fire because their tunnel concrete lining is designed as a structural member. The aim of this experimental research is to verify the fire protection performance of newly developed cementitious material compared with the broadly used existing products in Europe and Japan. For the experiments, the general NATM tunnel concrete linings with the newly developed material were tested using fire loading curve of RABT (Maximum peak temperature is $1,200^{\circ}C$) and RWS (Maximum peak temperature is $1,350^{\circ}C$). From the test results, the newly developed fire protection material applied with 30 mm thickness showed good fire-proofing performance under RABT fire loading.

  • PDF

A Study on Concrete Lining Stress Changes Considering Load Supporting Capacity of Primary Supports of NATM Tunnel (NATM 터널에서 1차지보재의 지보압을 고려한 콘크리트라이닝 응력변화에 관한 연구)

  • Jeon, Sang Hyun;Shin, Young Wan;Yoo, Han Kyu
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.31 no.4C
    • /
    • pp.147-154
    • /
    • 2011
  • Currently NATM tunnels are designed by applying the initial ground loads caused during construction to the primary supports, conisting of shotcrete, steel ribs and rock bolts. For long term considerations, it is assumed that the primary supports lose its functionality and therefore the secondary support, i.e. concrete lining, is design to resist against the entire ground loads. But the steel ribs, usually applied to bad ground conditions, are embedded in shotcrete causing very little corrosion and therefore the assumption that the primary support will lose all of its functionality is too conservative. Also even though shotcrete carbonates in long term, excluding it from design is also too conservative. In this study, we have, through analytical and numerical analysis, set a rational level of support pressure and allowable relaxed rock mass height sustainable by the primary support for long term design. Changes in sectional forces of the concrete lining considering the calculated support pressure of the primary supports was also carried out. Shallow subway tunnels were considered in the analysis with weathered rock and soft rock ground conditions. The analysis results showed that, by considering the support pressure of steel ribs, an economical design of the concrete lining is possible.

Training a semantic segmentation model for cracks in the concrete lining of tunnel (터널 콘크리트 라이닝 균열 분석을 위한 의미론적 분할 모델 학습)

  • Ham, Sangwoo;Bae, Soohyeon;Kim, Hwiyoung;Lee, Impyeong;Lee, Gyu-Phil;Kim, Donggyou
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.23 no.6
    • /
    • pp.549-558
    • /
    • 2021
  • In order to keep infrastructures such as tunnels and underground facilities safe, cracks of concrete lining in tunnel should be detected by regular inspections. Since regular inspections are accomplished through manual efforts using maintenance lift vehicles, it brings about traffic jam, exposes works to dangerous circumstances, and deteriorates consistency of crack inspection data. This study aims to provide methodology to automatically extract cracks from tunnel concrete lining images generated by the existing tunnel image acquisition system. Specifically, we train a deep learning based semantic segmentation model with open dataset, and evaluate its performance with the dataset from the existing tunnel image acquisition system. In particular, we compare the model performance in case of using all of a public dataset, subset of the public dataset which are related to tunnel surfaces, and the tunnel-related subset with negative examples. As a result, the model trained using the tunnel-related subset with negative examples reached the best performance. In the future, we expect that this research can be used for planning efficient model training strategy for crack detection.

An Experimental Study on the Behaviour of Tunnel Excavated in a Homogeneous Ground by Two-Stage Excavation (균질지반에서 2단계로 굴착되는 터널의 거동특성에 대한 실험적 연구)

  • 김동갑;박승준;이상덕
    • Tunnel and Underground Space
    • /
    • v.14 no.5
    • /
    • pp.345-352
    • /
    • 2004
  • In a shotcrete support system, the cooperation of the ground and the shotcrete lining makes it possible to transfer the shear stress to the shotcrete lining, which is dedicated to form a stable structure. In this study, a homogeneous model ground with constant strength was produced by using gypsum and the tunnel was excavated with a top heading method under the definite initial stress. During the excavation, the stress in the ground around the tunnel and the deformation of shotcrete lining were measured, The tensile stress was generated in tangential direction in the ground near the tunnel and in the shotcrete lining due to tunnel excavation. This shows the unified behavior of the ground and shotcrete lining, which is the most typical characteristic of the shotcrete support. As a result, the rates of in-situ stress during the excavation at a top boundary line was 9% and at top arch heading 15%. It was 48% right after excavating the heading and 94% before cutting the bench.