• Title/Summary/Keyword: concrete layers

Search Result 332, Processing Time 0.023 seconds

Experimental study on durability of strengthened corroded RC columns with FRP sheets in tidal zone of marine environment

  • Kashi, Amin;Ramezanianpour, Ali Akbar;Moodi, Faramarz
    • Computers and Concrete
    • /
    • v.19 no.4
    • /
    • pp.339-346
    • /
    • 2017
  • The main objective of this paper was to illuminate the effect of marine environmental condition on durability of reinforced concrete (RC)-corroded columns strengthened with carbon fiber reinforced polymer (CFRP) and glass fiber reinforced polymer (GFRP) layers. Small-scale columns were prepared and corroded by an accelerated corrosion process. After strengthening, compressive strength tests were carried out on control and weathered specimens. In this research, a marine simulator was designed and constructed similar to the tidal zone of marine environment in south of Iran which was selected as a case study in this research. Mechanical properties of wrapped specimens were studied after placing them inside the simulator for 3000 hours. Marine environment decreased ultimate strength by 4.5% and 26.3% in CFRP and GFRP-wrapped columns, respectively. In some corroded-columns, strengthening was carried out after replacing damaged cover by self-compacted mortar. In this method, by confining with one layer of CFRP and GFRP, 4.2% and 22.4% reduction in ultimate strength was observed, respectively, after exposure. Furthermore, the elastic-brittle behavior has been verified in this retrofit method. Also results of tension tests revealed, the ultimate tensile strength was degraded by 2% and 28.8% in CFRP and GFRP sheets, respectively, after applying marine exposure.

Application of Pile Net Method to restrain the Soft Ground settlement in Concrete Track (콘크리트궤도 침하억제를 위한 파일네트공법 적용성 검토)

  • Lee, Il-Wha;Lee, Sung-Jin;Lee, Su-Hyung;Bang, Eui-Seok;Jung, Jang-Yong
    • Proceedings of the KSR Conference
    • /
    • 2008.06a
    • /
    • pp.1695-1704
    • /
    • 2008
  • The problems associated with constructing high-speed concrete track embankments over soft compressible soil has lead to the development and/or extensive use of many of the ground improvement techniques used today. Drains, surcharge loading, and geosynthetic reinforcement, have all been used to solve the settlement and embankment stability issues associated with construction on soft soils. However, when time constraints are critical to the success of the project, owners have resorted to another innovative approach. Especially, the design criteria of residual settlement is limited as 30mm for concrete track embankment, it is very difficult to satisfy this standard using the former construction method. Pile net method consist of vertical columns that are designed to transfer the load of the embankment through the soft compressible soil layer to a firm foundation and one or more layers of geosynthetic reinforcement placed between the top of the columns and the bottom of the embankment. This paper will present the guidelines for the design of pile net method to supported embankments. These guidelines were developed based on a review of current design methodologies and a parametric study of design variables using numerical modeling.

  • PDF

Experimental Study on the Ductile Behavior of Reinforced Concrete Beams with Carbon Fiber Sheets (탄소섬유시트로 보강된 철근콘크리트 보의 연성거동에 관한 실험적 고찰)

  • Park, Hyun-Jung;Park, Sung-Soo
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.5 no.3
    • /
    • pp.181-189
    • /
    • 2001
  • Recently, the need for strengthening reinforced concrete(R.C.) structure has been increased, particularly when there is an increase in load requirements, a change in use, a degradation problem, or design/construction defects. The use of composite materials for structural repair presents several advantages and has been investigated all over the world. It is well known that the incorporation of carbon fiber sheet(CFS) with concrete is one of the most effective ways to strengthen the R.C. structure. In this papers, experimentally investigated the ductile behavior of the R.C. beams strengthened with CFS, and provided the basic data for design of R.C. beams strengthened with CFS. Tests were carried out with 15 beams ($20cm{\times}30cm{\times}240cm$) reinforced with CFS, and with parameters including and the ratio of tensile reinforcement to that of balanced condition and number of CFS. The results show that strengthened and non-strengthened beams exhibit different ductile behovior. Non-strengthened beams showed increase of ductility as amount of the tensile reinforcement decreased. However, bearing capacity of the CFS-strengthened beams are dictated by the strength of the CFS layers that a very high ductility is indicated for the beams with large number of CFS.

  • PDF

An experimental investigation of the flexural strengthening of preloaded self-compacted RC beams using CFRP sheets and laminates composites

  • Lattif, Youssef;Hamdy, Osman
    • Advances in concrete construction
    • /
    • v.13 no.4
    • /
    • pp.307-313
    • /
    • 2022
  • This paper performs an experimental study on the flexural behavior of preloaded reinforced self-compacted concrete beams strengthened with carbon fiber reinforced polymers CFRP. A group of six preloaded strengthened beams was investigated along with one unstrengthened beam used as a reference beam RB. All beams have the same dimensions and reinforcement details: three beams are strengthened with CFRP laminates against flexural failure and three beams are strengthened with CFRP sheets. For simulating actual conditions, the beams are loaded before strengthening. Then, after strengthening, the beams are tested for flexural strength using 4-point loads where cracked and ultimate load and failure mode, along with load-deflection relation are recorded. To study the different configurations of strengthening, one layer, two layers, and U-wrap formation of laminates and sheets are considered. The results show that strengthing the RC beams using CFRP is an effective method to increase the beam's capacity by 47% up to 153% where deflection is reduced by 5%-80%. So, the beams strengthened with CFRP laminates have higher load capacity and lower ductility in comparison with the beams strengthened with CFRP sheets.

Effects of unconfined blast on strategic structures and its protective measures

  • Choubey, Bishwajeet;Dutta, Sekhar C.;Hussain, Md. Ahsaan
    • Structural Engineering and Mechanics
    • /
    • v.84 no.2
    • /
    • pp.167-180
    • /
    • 2022
  • A strategic structure when exposed to direct hit of conventional bomb/projectile are severely damaged because of large amounts of energy released by the impact and penetration of bomb. When massive concrete slabs suffer a direct hit, the energy released during impact and penetration process are able to easily break up large mass of concrete. When over stressed under such impact of bombs, the concrete structure fails showing brittle behavioural nature. This paper is intended to study and suggest the protective measures for structures used for strategic application by adopting a means to dissipate the large quantum of energy released. To quantitatively evaluate the force, displacement and energy in such scenario, a fine numerical model of the proposed layered structure of different combinations was built in ANSYS programme in which tri-nitrotoluene (TNT) explosive was detonated at penetration depth calculated for GP1000 Lbs bomb. The distinct blast mitigation effect of the proposed structure was demonstrated by adopting various layers/barriers created as protective measures for the strategic structure. The calculated result shows that the blast effect on the structure is potentially reduced due to provision of buster slab with sand cushioning provided as protective measure to the main structure. This concept of layered protective measures may be adopted for safeguarding strategic structures such as Domes, Tunnels and Underground Structures.

A Study on the Calculation of Ternary Concrete Mixing using Bidirectional DNN Analysis (양방향 DNN 해석을 이용한 삼성분계 콘크리트의 배합 산정에 관한 연구)

  • Choi, Ju-Hee;Ko, Min-Sam;Lee, Han-Seung
    • Journal of the Korea Institute of Building Construction
    • /
    • v.22 no.6
    • /
    • pp.619-630
    • /
    • 2022
  • The concrete mix design and compressive strength evaluation are used as basic data for the durability of sustainable structures. However, the recent diversification of mixing factors has created difficulties in calculating the correct mixing factor or setting the reference value concrete mixing design. The purpose of this study is to design a predictive model of bidirectional analysis that calculates the mixing elements of ternary concrete using deep learning, one of the artificial intelligence techniques. For the DNN-based predictive model for calculating the concrete mixing factor, performance evaluation and comparison were performed using a total of 8 models with the number of layers and the number of hidden neurons as variables. The combination calculation result was output. As a result of the model's performance evaluation, an average error rate of about 1.423% for the concrete compressive strength factor was achieved. and an average MAPE error of 8.22% for the prediction of the ternary concrete mixing factor was satisfied. Through comparing the performance evaluation for each structure of the DNN model, the DNN5L-2048 model showed the highest performance for all compounding factors. Using the learned DNN model, the prediction of the ternary concrete formulation table with the required compressive strength of 30 and 50 MPa was carried out. The verification process through the expansion of the data set for learning and a comparison between the actual concrete mix table and the DNN model output concrete mix table is necessary.

A Finite Element Based PML Method for Time-domain Electromagnetic Wave Propagation Analysis (시간영역 전자기파 전파해석을 위한 유한요소기반 PML 기법)

  • Yi, Sang-Ri;Kim, Boyoung;Kang, Jun Won
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.28 no.2
    • /
    • pp.123-130
    • /
    • 2015
  • This paper presents a new formulation for transient simulations of microwave propagation in heterogeneous unbounded domains. In particular, perfectly-matched-layers(PMLs) are introduced to allow for wave absorption at artificial boundaries used to truncate the infinite extent of the physical domains. The development of the electromagnetic PML targets the application to engineering mechanics problems such as structural health monitoring and inverse medium problems. To formulate the PML for plane electromagnetic waves, a complex coordinate transformation is introduced to Maxwell's equations in the frequency-domain. Then the PML-endowed partial differential equations(PDEs) for transient electromagnetic waves are recovered by the application of the inverse Fourier transform to the frequency-domain equations. A mixed finite element method is employed to solve the time-domain PDEs for electric and magnetic fields in the PML-truncated domain. Numerical results are presented for plane microwaves propagating through concrete structures, and the accuracy of solutions is investigated by a series of error analyses.

Compressive behavior of galvanized steel wire mesh (GSWM) strengthened RC short column of varying shapes

  • Marthong, Comingstarful
    • Structural Monitoring and Maintenance
    • /
    • v.7 no.3
    • /
    • pp.215-231
    • /
    • 2020
  • In a reinforced concrete building different shapes of column are adopted depending on the structural orientation and the architectural aspect. When there is an increase in loading due to changes in usage or revision in the design codes these columns need to be strengthened for enhanced performance during their service life. Strengthening materials such as carbon fiber and glass fiber polymer has been successfully used however, due to high cost application other alternative materials need to be explore. Galvanized steel wire mesh (GSWM) is one of the suitable materials locally available. High tensile strength, low weight, corrosion resistance, easy installation, minimum change in dimensions of the sections and cost effectives are the advantages of GSWM. Therefore, in this paper, four different shapes of column such as circular, square, rectangular and L were wrapped with different layers GSWM and jacketed with mortar. All the specimens were tested under axial compression. The objective of the study is to investigate the effectiveness of GSWM as a confining material for strengthening of column having varying shape. Test results shows that the axial strength enhanced with wrapping of GSWM jacket and a circular column presented the highest load carrying capacity and ductility as compared to the others. From the study of 22 column specimens, it is found that axial load is increased upto 20% and 19% when circular and square column are strengthened with one wrap of GSWM respectively, while a rectangular and L column required a wraps of two and three layers respectively in order to achieved the same load capacity as that of a circular column. Based on the present study, it is concluded that GSWM can be effectively used for strengthening of different shapes of concrete columns economically.

Consistent thermal analysis procedure of LNG storage tank

  • Jeon, Se-Jin;Jin, Byeong-Moo;Kim, Young-Jin;Chung, Chul-Hun
    • Structural Engineering and Mechanics
    • /
    • v.25 no.4
    • /
    • pp.445-466
    • /
    • 2007
  • As the LNG (Liquefied Natural Gas) tank contains cryogenic liquid, realistic thermal analyses are of a primary importance for a successful design. The structural details of the LNG tank are so complicated that some strategies are necessary to reasonably predict its temperature distribution. The proposed heat transfer model can consider the beneficial effects of insulation layers and a suspended deck on temperature distribution of the outer concrete tank against cryogenic conditions simply by the boundary conditions of the outer tank model. To this aim, the equilibrium condition or heat balance in a steady state is utilized in a various way, and some aspects of heat transfer via conduction, convection and radiation are implemented as necessary. Overall thermal analysis procedures for the LNG tank are revisited to examine some unjustifiable assumptions of conventional analyses. Concrete and insulation properties under cryogenic condition and a reasonable conversion procedure of the temperature-induced nonlinear stress into the section forces are discussed. Numerical examples are presented to verify the proposed schemes in predicting the actual temperature and stress distributions of the tank as affected by the cryogenic LNG for the cases of normal operation and leakage from the inner steel tank. It is expected that the proposed schemes enable a designer to readily detect the effects of insulation layers and a suspended deck and, therefore, can be employed as a useful and consistent tool to evaluate the thermal effect in a design stage of an LNG tank as well as in a detailed analysis.

A Study on the Optimum Mix Proportion for Early Strength of Concrete in the Upper Layers of High Rise Building (Part I - 40MPa) (초고층 빌딩용 상층부 콘크리트의 조기강도 확보를 위한 최적배합 도출에 관한 연구 (Part I - 40MPa를 중심으로))

  • Jeon, In-Ki;Park, Yong-Kyu;Lee, Joo-Hun;Choi, Myung-Hwa;Yoon, Gi-Won
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2008.11a
    • /
    • pp.321-324
    • /
    • 2008
  • Recently increasing interest in high-rise building around the world for more than 100 floor, the trend is the increasing use of high-strength and high-flowable concrete so as of productivity improvements and cost savings to improve the performance of the early strength development. This study is to reach the optimal combination by reviewing the performance of high-rise building which is required. The results show that $30.0{\sim}32.5%$ of W/B, $155㎏/m^3$ of unit water and FA10+SP10 is best properties for early strength of concrete.

  • PDF