• 제목/요약/키워드: concrete joint

검색결과 1,119건 처리시간 0.025초

Interaction of internal forces of interior beam-column joints of reinforced concrete frames under seismic action

  • Zhou, Hua;Zhang, Jiangli
    • Structural Engineering and Mechanics
    • /
    • 제52권2호
    • /
    • pp.427-443
    • /
    • 2014
  • This paper presents detailed analysis of the internal forces of interior beam-column joints of reinforced concrete (RC) frames under seismic action, identifies critical joint sections, proposes consistent definitions of average joint shear stress and average joint shear strain, derives formulas for calculating average joint shear and joint torque, and reports simplified analysis of the effects of joint shear and torque on the flexural strengths of critical joint sections. Numerical results of internal joint forces and flexural strengths of critical joint sections are presented for a pair of concentric and eccentric interior connections extracted from a seismically designed RC frame. The results indicate that effects of joint shear and torque may reduce the column-to-beam flexural strength ratios to below unity and lead to "joint-yielding mechanism" for seismically designed interior connections. The information presented in this paper aims to provide some new insight into the seismic behavior of interior beam-column joints and form a preliminary basis for analyzing the complicated interaction of internal joint forces.

줄눈균열 유도장치를 사용한 콘크리트 포장의 줄눈거동 (Joint Behavior of Concrete Pavements Using Joint Crack Inducer)

  • 박문길;최기효;남영국;정진훈
    • 대한토목학회논문집
    • /
    • 제28권1D호
    • /
    • pp.57-65
    • /
    • 2008
  • 콘크리트 포장의 줄눈은 초기 콘크리트 슬래브에 건조수축과 온도변화에 의한 무작위 균열이 발생하지 않도록 해주어 도로포장의 공용성 향상에 기여한다. 하지만 콘크리트가 충분히 양생되기 전에 수행된 줄눈 절단 작업은 줄눈 주변의 콘크리트에는 미세균열 등의 손상을 발생시키고 이로 인하여 반복적인 교통 및 환경하중에 의한 줄눈부의 파손이 장기적으로 발생한다. 본 연구에서는 이러한 인위적인 줄눈 절단작업 때문에 발생할 수 있는 줄눈부 파손을 감소시키기 위하여 선행연구를 통해 개발된 100mm, 150mm, 220mm 높이의 줄눈균열 유도장치와 다양한 깊이를 갖는 균열유도 홈을 시험시공 구간에 설치하고 줄눈균열의 발생과 거동을 약 5개월에 걸쳐 조사하였다. 그 결과, 줄눈균열 유도장치의 높이가 높을수록 균열유도 효과가 높은 반면 줄눈균열의 거동은 큰 것으로 나타났다. 향후 추가적인 조사와 줄눈균열 유도장치의 개선을 통하여 균열유도 효율을 높이고 줄눈의 성능을 향상시켜야 할 것으로 판단되었다.

Full-scale testing on the flexural behavior of an innovative dovetail UHPC joint of composite bridges

  • Qi, Jianan;Cheng, Zhao;Wang, Jingquan;Zhu, Yutong;Li, Wenchao
    • Structural Engineering and Mechanics
    • /
    • 제75권1호
    • /
    • pp.49-57
    • /
    • 2020
  • This paper presents a full-scale experimental test to investigate the flexural behavior of an innovative dovetail ultra-high performance concrete (UHPC) joint designed for the 5th Nanjing Yangtze River Bridge. The test specimen had a dimension of 3600 × 1600 × 170 mm, in accordance with the real bridge. The failure mode, crack pattern and structural response were presented. The ductility and stiffness degradation of the tested specimens were explicitly discussed. Test results indicated that different from conventional reinforced concrete slabs, well-distributed cracks with small spacing were observed for UHPC joint slabs at failure. The average nominal flexural cracking strength of the test specimens was 7.7 MPa, signifying good crack resistance of the proposed dovetail UHPC joint. It is recommended that high grade reinforcement be cooperatively used to take full advantage of the superior mechanical property of UHPC. A new ductility index, expressed by dividing the ultimate deflection by flexural cracking deflection, was introduced to evaluate the post-cracking ductility capacity. Finally, a strut-and-tie (STM) model was developed to predict the ultimate strength of the proposed UHPC joint.

Joint Shear Behavior Prediction for RC Beam-Column Connections

  • LaFave, James M.;Kim, Jae-Hong
    • International Journal of Concrete Structures and Materials
    • /
    • 제5권1호
    • /
    • pp.57-64
    • /
    • 2011
  • An extensive database has been constructed of reinforced concrete (RC) beam-column connection tests subjected to cyclic lateral loading. All cases within the database experienced joint shear failure, either in conjunction with or without yielding of longitudinal beam reinforcement. Using the experimental database, envelope curves of joint shear stress vs. joint shear strain behavior have been created by connecting key points such as cracking, yielding, and peak loading. Various prediction approaches for RC joint shear behavior are discussed using the constructed experimental database. RC joint shear strength and deformation models are first presented using the database in conjunction with a Bayesian parameter estimation method, and then a complete model applicable to the full range of RC joint shear behavior is suggested. An RC joint shear prediction model following a U.S. standard is next summarized and evaluated. Finally, a particular joint shear prediction model using basic joint shear resistance mechanisms is described and for the first time critically assessed.

Seismic detailing of reinforced concrete beam-column connections

  • Kim, Jang Hoon;Mander, John B.
    • Structural Engineering and Mechanics
    • /
    • 제10권6호
    • /
    • pp.589-601
    • /
    • 2000
  • A simplified analysis procedure utilizing the strut-tie modeling technique is developed to take a close look into the post-elastic deformation capacity of beam-column connections in ductile reinforced concrete frame structures. Particular emphasis is given to the effect of concrete strength decay and quantity and arrangement of joint shear steel. For this a fan-shaped crack pattern is postulated through the joints. A series of hypothetical rigid nodes are assumed through which struts, ties and boundaries are connected to each other. The equilibrium consideration enables all forces in struts, ties and boundaries to be related through the nodes. The boundary condition surrounding the joints is obtained by the mechanism analysis of the frame structures. In order to avoid a complexity from the indeterminacy of the truss model, it is assumed that all shear steel yielded. It is noted from the previous research that the capacity of struts is limited by the principal tensile strain of the joint panel for which the strain of the transverse diagonal is taken. The post-yield deformation of joint steel is taken to be the only source of the joint shear deformation beyond the elastic range. Both deformations are related by the energy consideration. The analysis is then performed by iteration for a given shear strain. The analysis results indicate that concentrating most of the joint steel near the center of the joint along with higher strength concrete may enhance the post-elastic joint performance.

Seismic behavior of rebar-penetrated joint between GCFST column and RGC beam

  • Li, Guochang;Fang, Chen;An, Yuwei;Zhao, Xing
    • Steel and Composite Structures
    • /
    • 제19권3호
    • /
    • pp.547-567
    • /
    • 2015
  • The paper makes the experimental and finite-element-analysis investigation on the seismic behavior of the rebar-penetrated joint between gangue concrete filled steel tubular column and reinforced gangue concrete beam under low cyclic reversed loading. Two specimens are designed and conducted for the experiment to study the seismic behavior of the rebar-penetrated joint under cyclic loading. Then, finite element analysis models of the rebar-penetrated joint are developed using ABAQUS 6.10 to serve as the complement of the experiment and further analyze the seismic behavior of the rebar-penetrated joint. Finite element analysis models are also verified by the experimental results. Finally, the hysteretic performance, the bearing capacity, the strength degradation, the rigidity degradation, the ductility and the energy dissipation of the rebar-penetrated joint are evaluated in detail to investigate the seismic behavior of the rebar-penetrated joint through experimental results and finite element analysis results. The research demonstrates that the rebar-penetrated joint between gangue concrete filled steel tubular column and reinforced gangue concrete beam, with full and spindle-shaped load-displacement hysteretic curves, shows generally the high ductility and the outstanding energy-dissipation capacity. As a result, the rebar-penetrated joint exhibits the excellent seismic performance and meets the earthquake-resistant requirements of the codes in China. The research provides some references and suggestions for the application of the rebar-penetrated joint in the projects.

고강도 재료를 사용한 철근 콘크리트 보.기둥 외부접합부의 전단내력에 관한 실험적 연구 (An Experimental Study on Shear on Shear Capacity of Reinforced Concrete Exterior Beam-Column Joint with High Strength Concrete)

  • 박기철;황홍순;정헌수
    • 한국콘크리트학회:학술대회논문집
    • /
    • 한국콘크리트학회 1992년도 봄 학술발표회 논문집
    • /
    • pp.59-66
    • /
    • 1992
  • The objective of this investigation was to dvaluater the factors influencing the vasic shear strength of Exterior Beam-Column Joint. Reversec cyclic loading were carride out for 10 reinforced concrete Exterior Beam-Column subassemblages. All the specimens finally failed in joint shear.

  • PDF

피로실험에 의한 콘크리트 포장체 경사가로줄눈부의 하중전달율에 관한 연구 (A Study on Load Transfer Efficiency of Skewed Transverse Joint of Concrete Pavement by the Fatigue Test)

  • 황승의;배주성
    • 한국구조물진단유지관리공학회 논문집
    • /
    • 제5권3호
    • /
    • pp.203-211
    • /
    • 2001
  • This paper presents load transfer efficiency of skewed transverse joint of jointed concrete pavement with the fatigue model test. A 1/12 scale model was used to satisfy the geometry, loading, material similitude, which are variables to the skew angel of transverse joint. As the test results by fatigue load 700kgf applied, the deflection and stress of transverse joint were decreased as to increasing of skew angle of transverse joint. In addition, load transfer efficiency of transverse joint with skew angle is better than the load transfer efficiency of transverse joint without skew angle.

  • PDF

Experimental Study on Seismic Behavior of Roof Joint

  • Cui, Yao;Gao, Xiaoyu;Liu, Hongtao;Yamada, Satoshi
    • 국제강구조저널
    • /
    • 제18권4호
    • /
    • pp.1373-1383
    • /
    • 2018
  • Experimental study was conducted to investigate the seismic behavior of roof joint. Eight full-scale specimens were tested considering the effects of axial force, joint height, hole shape of base plate and edge distance of concrete on the failure mode and resistance capacity of roof joint. With the increase of axial force, the hysteretic curves were fuller. The mechanical model of roof joint change from bending to shear. With the increase of joint height, the ultimate strength of roof joint decreased. If the hole shape of base plate changed from circle to loose, the slip behavior of roof joint appeared and the ultimate strength of roof joint decreased. The damage of edge concrete may occur if the edge distance of concrete was not big enough.