• Title/Summary/Keyword: concrete durability

Search Result 2,147, Processing Time 0.027 seconds

Evaluation of incorporating metakaolin to evaluate durability and mechanical properties of concrete

  • Joshaghani, Alireza;Moeini, Mohammad Amin;Balapour, Mohammad
    • Advances in concrete construction
    • /
    • v.5 no.3
    • /
    • pp.241-255
    • /
    • 2017
  • Concrete is known to be the most used construction material worldwide. The environmental and economic aspects of Ordinary Portland Cement (OPC) containing concrete have led research studies to investigate the possibility of incorporating supplementary cementitious materials (SCMs) in concrete. Metakaolin (MK) is one SCM with high pozzolanic reactivity generated throughout the thermal activation of high purity kaolinite clay at a temperature ranging from $500^{\circ}C$ to $800^{\circ}C$. Although many studies have evaluated the effect of MK on mechanical properties of concrete and have reported positive effects, limited articles are considering the effect of MK on durability properties of concrete. Considering the lifetime assessment of concrete structures, the durability of concrete has become of particular interest recently. In the present work, the influences of MK on mechanical and durability properties of concrete mixtures are evaluated. Various experiments such as slump flow test, compressive strength, water permeability, freeze and thaw cycles, rapid chloride penetration and surface resistivity tests were carried out to determine mechanical and durability properties of concretes. Concretes made with the incorporation of MK revealed better mechanical and durability properties compared to control concretes due to combined pozzolanic reactivity and the filler effect of MK.

Control of Crack and Enhanced Durability Performance of Face Slab Concrete (차수벽 콘크리트의 균열제어 및 성능향상에 관한 연구)

  • 임정열;정우성;김완영;원종필
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2003.11a
    • /
    • pp.537-540
    • /
    • 2003
  • The effects of substituting cement with fly ash(10%, 15%, 20%) and different fiber addition(polypropylene, cellulose, poly vinyl alcohol), on the control of microcrack and enhanced durability performance of face slab concrete in CFRD was studied experimentally It was conducted experiments of plastic shrinkage of mortar and concrete, and drying shrinkage of concrete. Also, durability test were carried out the chloride permeability, abrasion resistance and freeze-thaw repetition. Through the experimental results, it was concluded that ploy vinyl alcohol fiber containing concrete was the most effective mixture in control of cracking and durability.

  • PDF

A durability feature of concrete using inorganic waterproof agent (무기계 방수 혼화제 사용 콘크리트의 내구특성)

  • 문수동;이상호;문한영
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2003.05a
    • /
    • pp.343-348
    • /
    • 2003
  • Generally, waterproof agent has been used only for the waterproof effect. But in this paper, through the durability test of concrete using inorganic waterproof agent, we recognized that the concrete using this agent is more excellent in some peculiar properties of durability than general concrete. In this paper, we did compressive strength test, permeability test, pore volume test, etc. And the conclusion is as followings. The concrete of using this agent is more excellent in economy, waterproof, durability, strength.

  • PDF

Probabilistic Durability Analysis of Concrete Structures by Numerical Method (수치해석에 의한 콘크리트 구조물의 확률론적인 내구성 해석)

  • Jung, Sang-Hwa;Kim, Joo-Hyung;Lee, Kwang-Myong;Kim, Jee-Sang;Bae, Su-Ho
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2006.05b
    • /
    • pp.181-184
    • /
    • 2006
  • Traditional durability analysis is not possible to provide a controlled durability and long-term performance of concrete structures. Recently, research works have shown that probabilistic approach based on the theory of structural reliability, would be very valuable for durability analysis. In this study, the probabilistic durability analysis based on a Monte Carlo Simulation was carried out using sample data selected from detailed field investigation. The probabilistic properties of some design variables, such as diffusion coefficients of concrete and surface chloride concentration, were newly determined using some experimental data. By applying a probabilistic durability analysis to an integral structural design, the durability performance of concrete structures would be remarkably improved.

  • PDF

A Probability-Based Durability Analysis of Concrete Structures (콘크리트 구조물의 확률론적 내구성 해석)

  • Kim Jee-Sang;Lee Kwang-Myong;Jung Sang-Hwa;Bae Su-Ho;Choi Kyu-Yong;Yang Jong-Ho
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2005.05b
    • /
    • pp.189-192
    • /
    • 2005
  • In recent years, many research works have been carried out in order to obtain a more controlled durability and long-term performance of concrete structures in chloride containing environments. In particular, the development of new procedures for probability-based durability analysis/design has proved to be very valuable. In this paper, the equation used for modelling of the chloride penetration was based on Fick's Second Law of Diffusion in combination with a time dependent diffusion coefficient. The probability analysis of the durability performance was performed by use of a Monte Carlo Simulation. The procedure was applied to an example based on limited data gathered in this country. The influences of each parameter on the durability of concrete structures are studied and some comments for durability design are given. The new procedure may be very useful in designing concrete structures in chloride containing environments.

  • PDF

A Study on the Durability and Strength Properties of Incorporating Polypropylene Fiber (합성섬유를 혼입한 콘크리트의 강도 및 내구특성)

  • Jung, Young-Hwa;Lee, Ju-Hyung;Hong, Chang-Woo;Lee, Jung Ho
    • Journal of Industrial Technology
    • /
    • v.18
    • /
    • pp.371-378
    • /
    • 1998
  • Concrete structures has been deteriorated by poor environment. This study was conducted to evaluate durability of concrete which are increasingly demanded recently. Therefore, the research of durability must be executed for application of Polypropylene fiber reinforced concrete real structures. Concrete durability properties incorporating Polypropylene fiber was performed with the variable of Fiber contents, Fiber type and Target strength, specimens were made and subjected to durability and strength tests. The results show that strength of concrete is increased the Fiber content increase, Mono-Filament fiber and Polypropylene fiber reinforced concrete makes improved durability properties.

  • PDF

Probability-based durability design software for concrete structures subjected to chloride exposed environments

  • Shin, Kyung-Joon;Kim, Jee-Sang;Lee, Kwang-Myong
    • Computers and Concrete
    • /
    • v.8 no.5
    • /
    • pp.511-524
    • /
    • 2011
  • Although concrete is believed to be a durable material, concrete structures have been degraded by severe environmental conditions such as the effects of chloride and chemical, abrasion, and other deterioration processes. Therefore, durability evaluation has been required to ensure the long term serviceability of structures located in chloride exposed environments. Recently, probability-based durability analysis and design have proven to be reliable for the service-life predictions of concrete structures. This approach has been successfully applied to durability estimation and design of concrete structures. However, currently it is difficult to find an appropriate method engineers can use to solve these probability-based diffusion problems. In this paper, computer software has been developed to facilitate probability-based durability analysis and design. This software predict the chloride diffusion using the Monte Carlo simulation method based on Fick's second law, and provides durability analysis and design solutions. A graphic user interface (GUI) is adapted for intuitive and easy use. The developed software is very useful not only for prediction of the service life but for the durability design of the concrete structures exposed to chloride environments.

Durability of Concrete Using Ternary Blended Cement (삼성분계 시멘트를 사용한 콘크리트의 내구성)

  • 심은철;배수호;박광수;이준구;임병탁;하재담
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2003.11a
    • /
    • pp.78-81
    • /
    • 2003
  • Recently, physical properties of concrete containing ternary blended cement were actively researching to develop durability, mobility, and atc. as well as strength increase of concrete. In this study, durability of concrete such as the resistance against chloride ion penetration, rebar corrosion, freeze and thaw, and sulfate were researched for concrete containing ordinary portland cement(OPC) and ternary blended cement(TBC), respectively. For this purpose, concrete specimens containing OPC and TBC, respectively, were made for 37.5% of W/C, and then various durability experiments described above were carried out. As a result, it was observed from the test that concrete containing TBC showed excellent durability than concrete containing OPC.

  • PDF

A Study for Development and Actual Application of High Durability Concrete (고내구성 콘크리트 개발 및 실용화 연구)

  • 오병환;정원기;강승희;장봉석;조윤구
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 1995.10a
    • /
    • pp.155-158
    • /
    • 1995
  • High durabitiy concrete increasingly sutudied in various countries. This report presents the data on durability related properties such as the chloride ion permeability, the resistance to freezing-thawing, the corrosion of steel and the resistance attack. To promote the actual application of high durability concrete, several series of high durability concrete have been made and applied to actual structures.

  • PDF

A Study on Improvement for Freeze and Thaw Durability of Concrete Using Recycled Coarse Aggregate (재생굵은골재 사용 콘크리트의 내동해성 향상을 위한 연구)

  • 김용직;문한영;문대중
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2002.05a
    • /
    • pp.643-648
    • /
    • 2002
  • A research for recycling the demolished-concrete as concrete aggregate has been concerned in all over the world. There, however, are some problems that qualities of recycled aggregates are not only largely different, but also mechanical properties of recycled aggregate concrete decrease a little in comparison with that of natural aggregate concrete. In this study, the resistance of freezing and thawing of concrete using source-concrete recycled aggregate(SRN) and demolished-concrete recycled aggregate(DRA) was investigated. Futhermore a research for improvement of freeze and thaw durability of recycled aggregate concrete was performed. Relative dynamic modulus of elasticity of SRN and DRA recycled aggregate concrete was dropped 60% before 150 of freezing and thawing cycle, and was much lower than that of control concrete. Relative dynamic modulus of elasticity of recycled aggregate concrete was increased to decrease water-cement ratio, but the freeze and thaw durability of recycled aggregate concrete was not enough improved. Futhermore, when metakaolin and silica fume were repalced, the freeze and thaw durability of recycled aggregate concrete containg metakaolin was more improved than that of silica fume.

  • PDF