• Title/Summary/Keyword: concrete drying shrinkage

Search Result 489, Processing Time 0.032 seconds

Drying Shrinkage of High-Volume Fly Ash Concrete (High-Volume 플라이애쉬 콘크리트의 건조수축특성)

  • 최석균;이광명;이진용
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 1999.10a
    • /
    • pp.195-198
    • /
    • 1999
  • Fly ash is the most common artificial pozzolan, which is a material precipitated electrostatically from the exhaust gases of coal-fired power stations. Fly ash can be used as the supplementary material as well as the material for high performance concrete and hence, the development of high-volume fly ash concrete is imperative. In this study, the characteristics of drying shrinkage of high volume fly ash concrete is investigated. It is found from test results that as the replaced amount of fly ash in concrete is increased, drying shrinkage of concrete is reduced.

  • PDF

Effect of Expanding Admixture and Shrinkage Reducing Agent on the Shrinkage Reducing Properties of Ultra High Performance Cement Mortar (팽창재 및 수축저감제가 초고성능 시멘트 모르타르의 수축특성에 미치는 영향)

  • Han, Dong-Yeop;Yu, Myoung-Youl;Lee, Hyun-Soo
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2006.05b
    • /
    • pp.61-64
    • /
    • 2006
  • Comparing with traditional high performance concrete, ultra high performance concrete (UHPC) has the property of high-tenacity. However, drying shrinkage and autogenous shrinkage can be arisen as the major defect to UHPC. In this study, therefore, it was tested to reduce drying shrinkage and autogeneous shrinkage by adding expanding admixture (EA) and shrinkage reducing agent (SRA). As a result, for a case drying shrinkage, the shrinkage was decreased by 94% when EA was exchanged, and it was decreased by 64% when SRA was added. For the case of autogenous shrinkage, the mortar was expanded at early age and the shrinkage was decreased by 87% when EA was exchanged, and the shrinkage was decreased by 70% when SRA was added.

  • PDF

Effect of Admixtures on Drying Shrinkage Crack of Hardened Cement Mortar (시멘트경화체의 건조수축균열에 미치는 혼화재의 영향)

  • 이승한;이종석
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 1995.10a
    • /
    • pp.229-233
    • /
    • 1995
  • In this study we have the properties of drying shrinkage crack of hardened cement mortar using admixtures. The drying shrinkage cracking test process has been examined by the restrained drying shrinkage strain by restraining rate measuring properties of strain-with- restraint by JIS original proposal and keeps a flow value of mortar about 100$\pm$5%. The results show that the usage of shrinkage reducing agent 1.5% was effective on the control of drying shrinkage in OPC and CP by restraining rate 20% and strain-with-restraing 20~30 $\mu$, the usage of expansion agent 0.45% was effective by restraining rate 50~60% and strain-with-restraint 40~80$\mu$, and the effectiveness was increased with shrinkage reducing agent. Also. admixtures such as Flyash, CP and NC reduced restrained shrinkage and drying shrinkage cracking and more with shrinkage reducing agent

  • PDF

Reduction of Drying Shrinkage of Mortar and Concrete by Expansion of Rapid Cooling Slag Fine Aggregate (급냉 슬래그 잔골재의 팽창성을 활용한 모르타르 및 콘크리트의 건조수축저감에 관한 연구)

  • Lee, Dong-Gyu;Min, Kyung-Hwan;Jeong, Yong-Wook
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.16 no.5
    • /
    • pp.3511-3517
    • /
    • 2015
  • It is necessary to maximize the durability of Concrete for the underground structure because its maintenance and reinforcement are difficult. For cracks due to drying shrinkage of the concrete on the characteristics of the material, there is a need for an alternative in the deterioration phenomenon that occurs. In this study, fundamental properties including drying shrinkage of mortar and concrete were investigated to replace fine aggregate from cooling slag for reducing drying shrinkage of mortar and concrete. In the case of rapid cooling slag fine aggregate, it was effective to reduce and restrain initial shrinkage of mortar and concrete, and compressive strength was increased through the all specimen in proportion to its replacement ratio.

An Experimental Study on the Recycled! Concrete Durability (재생 콘크리트의 내구성에 관한 실험적 연구)

  • 이명규;정상화;김인수
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2003.05a
    • /
    • pp.675-680
    • /
    • 2003
  • In this study, various tests are performed for the durability of the concrete using domestic recycled coarse aggregate including drying shrinkage, permeability, freezing-thawing resistance and $CO_2$ diffusivity. Tests of freezing-thawing resistance, chloride ion permeability and $CO_2$ diffusivity of recycled concrete show favorable results. But, the maximum drying shrinkage ratio to normal concrete is increased 24% with increasing substitution ratio of recycled aggregate. Therefore, for the use of recycled concrete in structures, the preventive measures of drying shrinkage is necessary in mix design and the adequate substitution ratio of recycled aggregate should be proposed.

  • PDF

A Study on the Physical Properties of Concrete Using Drying Shrinkage-Reducing Superplasticizer (건조수축 저감형 유동화제를 사용한 콘크리트의 물리적 특성에 관한 연구)

  • Shin Jae-Kyung;Oh Chi-Hyun;Choi Jin-Man;Lee Seong-Yeun;Han Min-Cheol;Han Cheon-Goo
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2005.05a
    • /
    • pp.215-218
    • /
    • 2005
  • This paper intended to evaluate the applicability of drying shrinkage reducing superplasticizer (DSRA) by investigating physical properties of concrete using DSRA, The application of flowing concrete method exhibited a less loss of slump and air content with time than those of conventional concrete and had small bleeding. Flowing concrete had larger compressive strength than base and conventional concrete by as much as $3\~5\%$. It also had less drying shrinkage by as much as $20\%$ compared with conventional concrete. This is due to the coupled effect of reduced water content and aqueous type expansive admixture. On the other hand, neutralization depth of flowing concrete showed greater than conventional concrete.

  • PDF

Comparison of Measurement Methods and Prediction Models for Drying Shrinkage of Concrete (콘크리트 건조수축 측정 방법 및 예측 모델에 대한 비교)

  • Yang, Eun-Ik;Kim, Il-Sun;Yi, Seong-Tae;Lee, Kwang-Myong
    • Journal of the Korea Concrete Institute
    • /
    • v.22 no.1
    • /
    • pp.85-91
    • /
    • 2010
  • In this study, the drying shrinkage strains were compared of 24~60 MPa concrete specimens subjected to various curing conditions and measurement methods were compared. And, the applicability of the test and prediction methods were investigated. According to the results, drying shrinkage was significantly reduced in 28 day curing condition. In the sealed curing case, drying shrinkage strain from demolding time was identical to the one of the standard curing case for low strength concrete, however, drying shrinkage strain was greatly increased than the standard case for high strength case because of the effect of autogenous shrinkage. The efficient measurement was possible using the embedded gage for concrete drying shrinkage, but, the measured value by contact gage was lower than the one by the embedded gage. The test results agreed with EC2 model better than the other.

Drying Shrinkage Reduction of Redispersible Polymer Powder-Modified Mortars Using Powdered Shrinkage-Reducing Agent (분말수축저감제를 이용한 제유화형 분말수지 혼입 폴리머 시멘트 모르터의 건조수축 저감효과)

  • ;Ohama, Yoshihiko
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 1998.04a
    • /
    • pp.231-236
    • /
    • 1998
  • In general, the drying shrinkage of polymer-modified mortars using redispersible polymer powders is much higher than that of unmodified mortar. The purpose of this study is to reduce the drying shringkage of polymer-modified mortars using a redispersible poly(ethylene-vinyl acetate) (EVA) powder, which is widely used for the manufacture of prepackaged-type polymer-modified mortar products at present. Polymer-modified mortars using the redispersible EVA powder with powdered shrinkage-reducing agent were prepared with various polymer-cement ratios and shrinkage-reducing agent contents, and tested for drying shrinkage and strength. From the test results, the drying shrinkage of the redispersible EVA powder-modified mortars with a powdered shrinkage agent is remarkably reduced with increasing shrinkage-reducing agent content, and becomes approximately a half of that of the redispersible EVA powder-modified mortars with the same polymer-cement ratios and without the shrinkage-reducing agent at a shrinkage-reducing agent content of 6%.

  • PDF

Long-Term Performance of High Strength Concrete

  • Choi Yeol;Kang Moon-Myung
    • Journal of the Korea Concrete Institute
    • /
    • v.16 no.3 s.81
    • /
    • pp.425-431
    • /
    • 2004
  • This paper describes an experimental investigation of how time-dependent deformations of high strength concretes are affected by maximum size of coarse aggregate, curing time, and relatively low sustained stress level. A set of high strength concrete mixes, mainly containing two different maximum sizes of coarse aggregate, have been used to investigate drying shrinkage and creep strain of high strength concrete for 7 and 28-day moist cured cylinder specimens. Based upon one-year experimental results, drying shrinkage of high strength concrete was significantly affected by the maximum size of coarse aggregate at early age, and become gradually decreased at late age. The larger the maximum size of coarse aggregate in high strength concrete shows the lower the creep strain. The prediction equations for drying shrinkage and creep coefficient were developed on the basis of the experimental results, and compared with existing prediction models.

Modelling of Drying Shrinkage for Different Environmental Conditions (환경인자를 고려한 건조수축의 예측모델 개발)

  • 한만엽
    • Magazine of the Korea Concrete Institute
    • /
    • v.8 no.1
    • /
    • pp.111-120
    • /
    • 1996
  • Drying shrinkage is a very important properties of concrete, which is affected by environmental conditions. The environmental conditions are temperature, relative humidity, and wind speed, which is quite variable and its effct on drying shrinkage is quite complex, too. In this study, environmental effects on drying shrinkage wrer integrated into one variable-evaporation rate. In several different environmental conditions, evaporation rate was measured with Evaporometer and compared with PCA chart, and also compared with measured drying shirnkage to verify the possibility of being a single parameter. The results are summarized in a prediction chart and prediction equation for drying shrinkage.