DOI QR코드

DOI QR Code

Comparison of Measurement Methods and Prediction Models for Drying Shrinkage of Concrete

콘크리트 건조수축 측정 방법 및 예측 모델에 대한 비교

  • Yang, Eun-Ik (Dept. of Civil Engineering, Kangnung-wonju Nationnal University) ;
  • Kim, Il-Sun (Dept. of Civil Engineering, Kangnung-wonju Nationnal University) ;
  • Yi, Seong-Tae (Dept. of Civil & Environmental Engineering, Inha Technical College) ;
  • Lee, Kwang-Myong (Dept. of Civil and Environmental System Engineering, Sungkyunkwan University)
  • 양은익 (강릉원주대학교 토목공학과) ;
  • 김일순 (강릉원주대학교 토목공학과) ;
  • 이성태 (인하공업전문대학 토목환경과) ;
  • 이광명 (성균관대학교 사회환경시스템공학과)
  • Published : 2010.02.28

Abstract

In this study, the drying shrinkage strains were compared of 24~60 MPa concrete specimens subjected to various curing conditions and measurement methods were compared. And, the applicability of the test and prediction methods were investigated. According to the results, drying shrinkage was significantly reduced in 28 day curing condition. In the sealed curing case, drying shrinkage strain from demolding time was identical to the one of the standard curing case for low strength concrete, however, drying shrinkage strain was greatly increased than the standard case for high strength case because of the effect of autogenous shrinkage. The efficient measurement was possible using the embedded gage for concrete drying shrinkage, but, the measured value by contact gage was lower than the one by the embedded gage. The test results agreed with EC2 model better than the other.

이 연구에서는 24~60 MPa 범위의 콘크리트에 대하여 다양한 양생조건과 측정 방법을 적용하여 재령에 따른 조건별 건조수축량을 비교하였고, 이를 통해 실험 방법의 적합성 및 예측 방법의 적용성을 검토하였다. 연구 결과에 따르면, 28일 양생이 가장 적은 건조수축을 나타냈으며, 저강도 콘크리트 봉합양생의 경우 탈형 후부터의 변형률을 비교 해보면, 표준양생의 건조수축과 크게 변하지 않는 것으로 나타났으나, 고강도 콘크리트 봉합양생의 경우 자기수축이 크게 발생하여 더 큰 건조수축을 나타냈다. 매립 게이지를 사용해도 효율적인 건조수축량 측정이 가능하며, 접지(contact) 게이지로 측정된 값이 매립 게이지로 측정한 값보다 작게 나타났다. 실험 결과는 EC2 모델예측식과 가장 잘 일치하는 것으로 나타났다.

Keywords

References

  1. KS F 2424, "모르타르 및 콘크리트의 길이 변화 시험 방법," Korean Industrial Standards, 2005, pp. 1-12.
  2. ASTM C 157, "Standard Test Method for Length Change of Hardened Hydraulic-Cement Mortar and Concrete," American Society for Testing Materials, ASCE, 2003, pp. 1-7.
  3. 한천구, 한민철, 송승헌, 윤섭, "팽창제와 수축저감제를 병용한 콘크리트의 건조수축 특성," 콘크리트학회 논문집, 18권, 3호, 2006, pp. 397-404.
  4. 고경택, 류금성, 윤기원, 한천구, 이장화, "잔골재 종류가 콘크리트의 건조수축과 내구성에 미치는 영향," 콘크리트학회 논문집, 18권, 2호, 2006, pp. 249-255. https://doi.org/10.4334/JKCI.2006.18.2.249
  5. 이광명, 선우주연, 이회근, Kamal H. Khayat, "양생조건이 콘크리트의 체적 변화에 미치는 영향," 콘크리트학회 논문집, 18권, 3호, 2006, pp. 331-338.
  6. Yang, Y., "Autogenous Shrinkage of High-strength Concrete Containing Silica Fume under Drying at Early Ages," Cement and Concrete Research, Vol. 35, Issue 3, 2005, pp. 449-456.
  7. Zhang, M. H., "Effect of Water-to-cementitious Materials Ratio and Silica Fume on the Autogenous Shrinkage of Concrete," Cement and Concrete R esearch, Vol. 33, Issue 10, 2003, pp. 1687-1694. https://doi.org/10.1016/S0008-8846(03)00149-2
  8. ACI 209R-92, "Prediction of Creep, Shrinkage and Temperature Effect in Concrete Structures," ACI Manual of Concrete Practice, ACI, 1992, pp. 1-47.
  9. 한국콘크리트학회, 콘크리트구조설계기준 해설, 한국콘 크리트학회, 2000, pp. 47-48.
  10. CEB_FIP Code, CEB-FIP Model Code, Design Code, Comite Euro International du Beton, 1990, pp. 51-59.
  11. Fib Bulletin 1, "Structure Concrete-Textbook on Behaviour," Design and Performance, Updated Knowledge of the CEB/ FIP Model Code 1990, Vol. 1, Federation International du beton, 1999, pp. 37-52.
  12. EuroCode 2, "Design of Concrete Structures," European Committee for Standardization, 2004, pp. 202-204.

Cited by

  1. Comparison on Characteristics of Concrete Autogenous Shrinkage according to Strength Level, Development Rate and Curing Condition vol.23, pp.6, 2011, https://doi.org/10.4334/JKCI.2011.23.6.741
  2. A Case Study on Cause Analysis for Longitudinal Crack of Duct Slab in Tunnel vol.16, pp.5, 2012, https://doi.org/10.11112/jksmi.2012.16.5.019
  3. Effect of Steam Curing on the Properties of Recycled Aggregate Concrete vol.18, pp.2, 2014, https://doi.org/10.11112/jksmi.2014.18.2.099
  4. Evaluation of Shrinkage Strain of Alkali-Activated Slag Concrete vol.25, pp.6, 2013, https://doi.org/10.4334/JKCI.2013.25.6.593