• Title/Summary/Keyword: concrete creep and shrinkage

Search Result 285, Processing Time 0.036 seconds

Deflection Analysis of Flexural Composite Members Considering Early-Age Concrete Properties (콘크리트의 초기재령특성을 고려한 합성형 휨 부재의 재령종속적 처짐해석)

  • 성원진;김정현;윤성욱;이용학
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2003.05a
    • /
    • pp.427-432
    • /
    • 2003
  • An analytical method to predict the flexural behavior of composite girder is presented in which the early-age properties of concrete are specified including maturing of elastic modulus, creep and shrinkage. The time dependent constitutive relation accounting for the early-age concrete properties is derived in an incremental format by expanding the total form of stress-strain relation by the first order Taylor series with respect to the reference time. The sectional analysis calculates the axial and curvature strains based on the force and moment equilibriums. The deflection curve of the box girder approximated by the quadratic polynomial function is calculated by applying to the proper boundary conditions in the consecutive segments. Numerical applications are made for the 3-span double composite steel box girders which is a composite bridge girder filled with concrete at the bottom of the steel box in the negative moment region. The one dimensional finite element analysis results are compared with those of the three dimensional finite element analysis and the analytical method based on the sectional analysis. Close agreement is observed among the three methods.

  • PDF

Finite Element Analysis of Flexural Composite Members Considering Early-Age Concrete Properties (콘크리트의 초기재령특성을 고려한 합성형 휨 부재의 유한요소 거동해석)

  • 강병수;주영태;신동훈;이용학
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2003.05a
    • /
    • pp.463-468
    • /
    • 2003
  • A finite element formulation to predict the flexural behavior of composite girder is presented in which the early-age properties of concrete are specified including maturing of elastic modulus, creep and shrinkage. The time dependent constitutive relation accounting for the early-age concrete properties is derived in an incremental format by expanding the total form of stress-strain relation by the first order Taylor series with respect to the reference time. The total potential energy of the flexural composite member is minimized to derive the time dependent finite element equilibrium equation. Numerical applications are made for the 3-span double composite steel box girders which is a composite bridge girder filled with concrete at the bottom of the steel box in the negative moment region. The numerical analysis with considering the variation of concrete elastic modulus are performed to investigate the effect of it on the early-age behavior of composite structures. The one dimensional finite element analysis results are compared with the analytical method based on the sectional analysis. Close agreement is observed among the two methods.

  • PDF

Differential Column Shortening of Plaza zrakyat Office Tower Including Inelastic Effect (비산성효과를 고려한 Plaza Rakyat 오피스동의 기둥부등축소량)

  • 송화철;유은종;정석창;주영규;안재현;박칠림
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 1997.10a
    • /
    • pp.475-480
    • /
    • 1997
  • Highrise concrete buildings are very sensitive to cumulative and differential shortening of their vertical element such as wall and columns. Inelastic deformation due to creep and shrinkage consist of various factors and load history af actual building is very complicated. Therefore, for the accurate prediction and compensation of axial shortening, special efforts in design and construction phase are required to ensure long-term serviceability and strength requirement. In this paper, axial shortening estimation and compensation procedure is presented, which utilized experimentally determined concrete properties and preliminary load history and computerized approach, in case of Plaza Rakyat office tower, 79-story reinforced concrete building under construction in Malaysia.

  • PDF

Brief description of the Design and Construction of the Burj Dubai Project, Dubai, UAE.

  • Abdelrazaq Ahmad K.
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2005.05a
    • /
    • pp.9-14
    • /
    • 2005
  • The Burj Dubai Project will be the tallest structure ever built by man; when completed the tower will be more than 700 meter tall and more than 160 floors. The early integration of aerodynamic shaping and wind engineering considerations played a major role in the architectural massing and design of this residential tower, where mitigating and taming the dynamic wind effects was one of the most important design criteria. This paper presents a brief overview of the structural system development and considerations of the tower and discusses the construction planning of the key structural components of the tower.

  • PDF

Evaluation on Mechanical Properties of High Strength Light-Weight Concrete with Elevated Temperature and loading (하중조건과 고온에 의한 고강도 경량 콘크리트의 역학적 특성 평가)

  • Kim, Gyu-Yong;Kim, Young-Sun;Choe, Gyeong-Cheol;Park, Hyun-Gil;Lee, Tae-Gyu
    • Journal of the Korea Concrete Institute
    • /
    • v.23 no.6
    • /
    • pp.723-730
    • /
    • 2011
  • It is very important to experimentally evaluate concrete behavior at elevated temperature because aggregates make up approximately 80 percent of volume in concrete. In this study, an experiment to evaluate mechanical properties of normal weight and light weight concrete of 60 MPa was conducted. Based on loading level of 0, 20 and 40 percent, the tests of 28 days compressive strength, elastic modulus, thermal strain, total strain, and transient creep using ${\phi}100{\times}200mm$ cylindrical specimens at elevated temperature were performed. Then, the results were compared with CEB (Committes Euro-international du Beton) model code. The results showed that thermal strain of light weight concrete was smaller than normal weight concrete. Also, the results showed that compressive strength of light concrete at $700^{\circ}C$ was higher than normal weight concrete and CEB code, similar to that obtained at ambient temperature. Transient creep developed from loading at a critical temperature of $500^{\circ}C$ caused the concrete strains to change from expansion to compression. The transient creep test result showed that internal force was high when the ratio of shrinkage between concrete and aggregate was more influential than thermal expansion.

An Integrated System to Predict Early-Age Properties and Durability Performance of Concrete Structures

  • Wang, Xiao-Yong;Lee, Han-Seung
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2010.05a
    • /
    • pp.465-466
    • /
    • 2010
  • In this paper, an integrated system is proposed which can evaluate both the early-age properties and durability performance of concrete structures. This integrated system starts with a hydration model which considers both Portland cement hydration and chemical reactions of supplementary cementing materials (SCM). Based on the degree of hydration of cement and mineral admixtures, the amount of reaction products, the early age heat evolution, chemically bound water, porosity, the early age short-term mechanical behaviors, shrinkage and early-age creep are evaluated as a function of curing age and curing conditions. Furthermore, the durability aspect, such as carbonation of blended concrete and chloride attack, are evaluated considering both the material properties and surrounding environments. The prediction results are verified through experimental results.

  • PDF

Experimental Observation of Double Composite Box Girders subjected to Concrete Creep and Shrinkage (이중합성 박스 거더의 재령종속적 거동실험 및 해석)

  • 강병수;김정현;곽동석;홍인택;이용학
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2003.11a
    • /
    • pp.169-172
    • /
    • 2003
  • Time dependent deflections of double composite box girders are investigated based on the on going laboratory experiments scheduled for 3months long. Two of 2-span double composite box girders with 2.5m each span length are cast and time dependent behaviors are measured using 30 strain gages and 2 LVDTs after 5 days' curing. The measured experimental results are compared with the numerical predictions performed based on the one dimensional finite element method adopting beam element. The FEM formulation adopts the time dependent concrete constitutive model which is derived in an incremental format by expanding the total form of stress-strain relation by the first order Taylor series with respect to the reference time. A good agreement between the measured and predicted results are observed and the effects of the bottom concrete placed at the negative moment region of the bridge girder are discussed.

  • PDF

Practical Prediction of Creep, Shrinkage and Durability of Concrete In Japan (콘크리트 크리프, 수축 및 내구성에 대한 일본의 실무예측)

  • Kwon, Seung Hee;Kang, Su Tae
    • Magazine of the Korea Institute for Structural Maintenance and Inspection
    • /
    • v.16 no.1
    • /
    • pp.90-101
    • /
    • 2012
  • 최근 일본의 설계규정(설계기준 내 재료모델)은 전 세계에서 수집된 실험 결과들을 바탕으로 개발된 것으로, 세계 최고 수준의 예측 방법으로 알려져 있다. 그럼에도 불구하고 장기간 관측된 실제 교량의 처짐은 예측결과와 많은 차이를 나타내고 있다. 이 논문에서는 콘크리트의 시간의 존적 거동에 대한 일본 설계규정의 주요 변천 과정을 소개하고, 실제 장기거동과 예측결과가 큰 차이를 보이는 원인에 대한 논의가 이루어질 것이다. 또한 내구성이 높고 경제적인 콘크리트 구조물 건설을 위한 앞으로의 연구방향이 제시될 것이다.

  • PDF

Thermal Strain Properties of Ultra High Strength Concrete according to the Compressive Strength (압축강도에 따른 초고강도 콘크리트의 열변형 특성)

  • Yoon, Min-Ho;Kim, Gyu-Yong;Choe, Gyeong-Cheol;Hwang, Eui-Chul;Lee, Bo-Kyeong;Seo, Won-Woo
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2016.10a
    • /
    • pp.24-25
    • /
    • 2016
  • In this study, the thermal strain of high strength concrete with the compressive strength of 80, 130, 180MPa were measured under 25% of compressive strength loading condition. As results, it is considered that decline of the elastic modulus and shrinkage strain of high strength concrete become grater at the elevated temperatures.

  • PDF

Development of QC Shell Element For Three Dimensional Construction Stage Analysis of PSC Bridge (PSC 교량의 3차원 시공 중 해석기법을 위한 쉘요소 개발)

  • Byun, Yun-Joo;Kim, Hyun-Ky;Song, Sak;Kim, Young-Hoe;Pornpeerakeat, Sacharuck;Kim, Ki-Du
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2007.04a
    • /
    • pp.557-562
    • /
    • 2007
  • In order to analyze the PSC box-girder bridge by the cantilever construction method, three dimensional analysis method using the PSC shell clement is suggested. The time dependent material functions are based on the ACI and CEB code. The time dependent concrete material properties considered are changes in strength, elastic modulus, creep and shrinkage. For the prestressing tendon, relaxation effects are considered. Anchorage and friction loses during tendon installations are also included. The ACI and CEB material models for creep and elastic modulus are also included.

  • PDF