• Title/Summary/Keyword: concrete cracking

Search Result 1,431, Processing Time 0.03 seconds

Seismic analysis of RC tubular columns in air-cooled supporting structure of TPP

  • Wang, Bo;Yang, Ke;Dai, Huijuan;Bai, Guoliang;Qin, Chaogang
    • Earthquakes and Structures
    • /
    • v.18 no.5
    • /
    • pp.581-598
    • /
    • 2020
  • This paper aims to investigate the seismic behavior and influence parameters of the large-scaled thin-walled reinforced concrete (RC) tubular columns in air-cooled supporting structures of thermal power plants (TPPs). Cyclic loading tests and finite element analysis were performed on 1/8-scaled specimens considering the influence of wall diameter ratio, axial compression ratio, longitudinal reinforcement ratio, stirrup reinforcement ratio and adding steel diagonal braces (SDBs). The research results showed that the cracks mainly occurred on the lower half part of RC tubular columns during the cyclic loading test; the specimen with the minimum wall diameter ratio presented the earlier cracking and had the most cracks; the failure mode of RC tubular columns was large bias compression failure; increasing the axial compression ratio could increase the lateral bearing capacity and energy dissipation capacity, but also weaken the ductility and aggravate the lateral stiffness deterioration; increasing the longitudinal reinforcement ratio could efficiently enhance the seismic behavior; increasing the stirrup reinforcement ratio was favorable to the ductility; RC tubular columns with SDBs had a much higher bearing capacity and lateral stiffness than those without SDBs, and with the decrease of the angle between columns and SDBs, both bearing capacity and lateral stiffness increased significantly.

An Experimental Study on the Engineering Properties of HPFRCC According to Kinds, Shapes and Volume Fraction of Fibers (섬유의 종류, 형상 및 치환율에 따른 HPFRCC의 공학적 특성에 관한 실험적 연구)

  • Kim, Young-Duck;Cho, Bong-Suk;Kim, Jae-Hwan;Kim, Gyu-Yong;Choi, Kyung-Yuel;Kim, Moo-Han
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2003.11a
    • /
    • pp.59-62
    • /
    • 2003
  • Kinds, shapes and fraction ratios of fibers have influence on properties of HPFRCC(High-Performance Fiver Reinforced Cementitious Concrete) like bending strength, strain capacity and fracture toughness. For example, hydrophilic fibers have different chemical bond strength from hydrophobic fibers, fiber shapes influence on fiber pull-out and rupture, and fiber volume fraction influence on bending strength. In this study, to estimate influences of kinds, shapes and fraction ratios of fibers, we make HFRCC with 3 kind of fiber in various volume fraction of fiber and compare cracking, bending strength and fracture toughness. As the results, bending strength of HPFRCC was increased as fiber volume fraction was increase and fiber tensile strength was increase, and strain capacity and fracture toughness of HFRCC was higher in fiber pull-out fracture than in fiber rupture fracture. And HFRCC showing pseudo strain hardening has higher fiber reinforce efficiency than others.

  • PDF

Design and behaviour of double skin composite beams with novel enhanced C-channels

  • Yan, Jia-Bao;Guan, Huining;Wang, Tao
    • Steel and Composite Structures
    • /
    • v.37 no.5
    • /
    • pp.517-532
    • /
    • 2020
  • This paper firstly developed a new type of Double Skin Composite (DSC) beams using novel enhanced C-channels (ECs). The shear behaviour of novel ECs was firstly studied through two push-out tests. Eleven full-scale DSC beams with ECs (DSCB-ECs) were tested under four-point loading to study their ultimate strength behaviours, and the studied parameters were thickness of steel faceplate, spacing of ECs, shear span, and strength of concrete core. Test results showed that all the DSCB-ECs failed in flexure-governed mode, which confirmed the effective bonding of ECs. The working mechanisms of DSCB-ECs with different parameters were reported, analysed and discussed. The load-deflection (or strain) behaviour of DSCB-ECs were also detailed reported. The effects of studied parameters on ultimate strength behaviour of DSCB-ECs have been discussed and analysed. Including the experimental studies, this paper also developed theoretical models to predict the initial stiffness, elastic stiffness, cracking, yielding, and ultimate loads of DSCB-ECs. Validations of predictions against 11 test results proved the reasonable estimations of the developed theoretical models on those stiffness and strength indexes. Finally, conclusions were given based on these tests and analysis.

Crack mapping in RC members using distributed coaxial cable crack sensors: modeling and application

  • Greene, Gary Jr.;Belarbi, Abdeldjelil;Chen, Genda
    • Smart Structures and Systems
    • /
    • v.1 no.4
    • /
    • pp.385-404
    • /
    • 2005
  • The paper presents a model to calculate reinforcement strain using measured crack width in members under applied tension, flexure, and/or shear stress. Crack mapping using a new type of distributed coaxial cable sensors for health monitoring of large-scale civil engineering infrastructure was recently proposed and developed by the authors. This paper shows the results and performance of such sensors mounted on near surface of two flexural beams and a large scale reinforced concrete box girder that was subjected to cyclic combined shear and torsion. The main objectives of this health monitoring study was to correlate the sensor's response to strain in the member, and show that magnitude of the signal's reflection coefficient is related to increases in applied load, repeated cycles, cracking, and reinforcement yielding. The effect of multiple adjacent cracks, and signal loss was also investigated. The results shown in this paper are an important step in using the sensors for crack mapping and determining reinforcement strain for in-situ structures.

Effects of traffic-induced vibrations on bridge-mounted overhead sign structures

  • Kim, Janghwan;Kang, Jun Won;Jung, Hieyoung;Pack, Seung-woo
    • Structural Engineering and Mechanics
    • /
    • v.55 no.2
    • /
    • pp.365-377
    • /
    • 2015
  • Large-amplitude vibration of overhead sign structures can cause unfavorable psychological responses in motorists, interfere with readability of the signs, and lead to fatigue cracking in the sign structures. Field experience in Texas suggests that an overhead sign structure can vibrate excessively when supported within the span of a highway bridge instead of at a bent. This study used finite element modeling to analyze the dynamic displacement response of three hypothetical sign structures subjected to truck-passage-induced vertical oscillations recorded for the girders from four actual bridges. The modeled sign bridge structures included several span lengths based on standard design practices in Texas and were mounted on precast concrete I-girder bridges. Results revealed that resonance with bridge girder vertical vibrations can amplify the dynamic displacement of sign structures, and a specific range of frequency ratios subject to undesirable amplification was identified. Based on these findings, it is suggested that this type of sign structure be located at a bridge bent if its vertical motion frequency is within the identified range of bridge structure excitation frequencies. Several alternatives are investigated for cases where this is not possible, including increasing sign structure stiffness, reducing sign mass, and installing mechanical dampers.

p-Version Nonlinear Finite Element Analysis of RC Slabs Strengthened with Externally Bonded CFRP Sheets (탄소섬유보강 플라스틱시트로 외부보강된 RC 슬래브의 p-Version 비선형 유한요소 해석)

  • Cho, Jin-Goo;Park, Jin-Hwan
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.48 no.1
    • /
    • pp.61-68
    • /
    • 2006
  • The p-version nonlinear finite element model has been developed to analyze the nonlinear behavior of simply supported RC slabs strengthened with carbon fiber reinforced plastic sheets. The shape function is adopted with integral of Legendre polynomials. The compression model of concrete is based on the Kupfer's yield criterion, hardening rule, and crushing condition. The cracking behavior is modeled by a smeared crack model. In this study, the fixed crack approach is adopted as being geometrically fixed in direction once generated. Each steel layer has a uniaxial behavior resisting only the axial force in the bar direction. Identical behavior is assumed fur tension and compression of steel according to the elastic modulus. The carbon fiber reinforced plastic sheets are considered as reinforced layers of equivalent thickness with uniaxial strength and rigidity properties in the present model. It is shown that the proposed model is able to adequately predicte the displacement and ultimate load of nonlinear simply supported RC slabs by a patch with respect to reinforcement ratio, thickness and angles of CFRP sheets.

Analysis Model of Extruded ECC Panel RC Composite Slabs (압출성형 ECC 패널 RC 복합 슬래브의 해석모델)

  • Cho, Chang-Geun;Kim, Yun-Yong;Seo, Jeong-Hwan;Lee, Seung-Jung
    • Journal of Korean Association for Spatial Structures
    • /
    • v.12 no.1
    • /
    • pp.51-58
    • /
    • 2012
  • A model for the nonlinear flexural analysis of extruded Engineered Cementitious Composite (ECC) panel reinforced concrete (RC) composite slab has been newly presented. From direct tensile test, ECC panel has been modeled to have the high-ductile tensile behavior after cracking. The developed model was compared with bending test results of two specimens, a conventional RC slab and a ECC panel RC composite slab. The predicted results were well patched with the experimental results, and the ECC panel RC composite slab system had advantages in crack control and improving flexural load-carrying capacity and deformation-capacity.

A Simplified Method for Creep Analysis of R/C Beams (철근콘크리트 보의 크리이프 단순 해석법)

  • 곽효경;서영재
    • Computational Structural Engineering
    • /
    • v.10 no.4
    • /
    • pp.267-280
    • /
    • 1997
  • This paper deals with the development of simplified methods to predict the creep deformation of reinforced concrete beams. The layer approach based on a degenerate kernel of compliance function in form of Dirichlet series is mentioned and a simplified analytical method derived from the equilibrium equations and compatibility conditions is proposed to overcome the sophisticated calculation procedures in the classical creep analysis. Correlation studies between analytical and experimental results and design codes are conducted with the objective to establish the validity of the proposed methods. Besides, various parameter studies are conducted with the objective to identify the effects of cracking, steel ratio and sectional shape in the creep deformation and the obtained results are discussed.

  • PDF

Model Test of Lining for Estimation of Tunnel Soundness (터널 건전도 평가를 위한 라이닝 모델실험)

  • Kim, Young Keun
    • Magazine of korean Tunnelling and Underground Space Association
    • /
    • v.1 no.2
    • /
    • pp.59-71
    • /
    • 1999
  • Recently, many deformations in tunnel such as crack and leakage were occulted. Specially, the defects of tunnel lining have been a serious problem in safety and stability many repair works for maintenance in tunnel have been carried out. Therefore, it is necessary to estimate the structural cracking for countermeasure in deformed tunnel and to investigate on the characteristics of lining system and the soundness of tunnel. In this study model tests for tunnel lining were carried out using test apparatus and centrifuge, In the direct loading test, the prototype was Kyungbu high-speed railway tunnel and the scale is 1/10, and lining models were made of concrete. Test conditions included load conditions such as direction, shape and type, lining conditions such as single and double lining, thickness, and reinforcement. In centrifuge model test, the prototype was Seoul subway tunnel and the scale is 1/100, and lining models were made of aluminum and hydrostone. Test conditions included tunnel defects such as thickness shortage. behind cavity and longitudinal cracks, reinforcement methods such as epoxy, grouting and carbon sheet. From these model tests , the characteristics of deformation and failure for tunnel lining were estimated, and the structural behaviors of deformed lining and the effects of repair and reinforcement for tunnel lining were researched.

  • PDF

Influence of Extraneous Deformation on the Toughness of Fiber Reinforced Concrete (외부변형이 섬유보강콘크리트의 인성에 미치는 영향)

  • Kim, Kyoung-Soo;Ko, Young-Zoo;Lim, Jeong-Whan;Bae, Ju-Seong
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.4 no.1
    • /
    • pp.111-120
    • /
    • 2000
  • This study discusses the issues related to the accuracy of deflection measurement in the testing of FRC. Some deflection methods may include large extraneous deformations. such as local crushing at the loading points, elastic and inelastic deformations of the loading fixture, etc. A faulty load-deflection curve will be obtained if an unstable deflection measuring system is used, and incorrect toughness evaluation can be reached on the basis of this faulty curve. In this paper, the discussion will focus on the effects of the deflection measuring system on both the measurement of the load-deflection response of FRC and the evaluation of FRC toughness. It is observed that ASTM toughness indices which is based on measuring deflection at first cracking is influenced significantly by extraneous deformation in deflection measurement. But extraneous deformation in deflection measurement result in negligible errors in toughness evaluation using JSCE and JCI definition. However, in order to evaluate toughness accuracy, it is desirable to use net load-deflection curve eliminated extraneous deformation.

  • PDF