• Title/Summary/Keyword: concrete confinement

Search Result 650, Processing Time 0.029 seconds

Mechanical Properties of High Performance Concrete with Material for Lateral Confinement (횡구속재 변화에 따른 고성능 콘크리트의 역학적 특성)

  • Han, Cheon-Goo;Jung, Duk-Woo;Jin, En-Hao
    • Journal of the Korea Concrete Institute
    • /
    • v.15 no.1
    • /
    • pp.110-116
    • /
    • 2003
  • Recently, as concrete structure becomes high rise and large scaled tendency, demands for high performance concrete such as high strength, high fluidity and high durability has been increased. Even though high performance concrete performs high strength, workability and durability, compared to with those of normal concrete, it is more brittle than normal concrete. Accordingly, this paper is intended to improve toughness and compressive strength through investigating the mechanical properties of the high performance concrete confined with metal lath, glass fiber and carbon fiber laterally in the case of 30% and 40% of W/B. According to the results, the compressive strength increases in order of metal lath, carbon fiber and glass fiber. Considering strain-stress curve with the kinds of material for lateral confinement, while brittleness failure occurs in plain concrete just after maximum load, it is improved in some degree in confined concrete due to increase of the strain by increase of toughness. Elastic modulus increases slightly in case of confined concrete, like the compressing strength.

Evaluate Bond strength of high Relative Rib Area Bars Using Beam-end test specimens (보 단부 부착시험체에 의한 높은마디 철근의 부착성능)

  • Seo Dong Min;Yang Seung Youl;Hong Gi Suop;Choi Oan Chul
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2004.05a
    • /
    • pp.112-115
    • /
    • 2004
  • Bond between reinforcing bar and surrounding concrete is supposed to transfer load safely in the process of design of reinforced concrete structures. Bond failure of reinforcing bar generally take place by splitting of the concrete cover as bond force between concrete and reinforcing bars exceeds the confinement of the concrete cover and reinforcement. However, the confinement force has a limitation. Thus, the only variable is the bearing angle corresponding to the change of bond force. Higher rib height bars possessing higher shearing resistance can maintain higher bearing angle and higher splitting resistance when bars are highly confined, and consequently higher bond strength, than lower rib higher bars. In this study, from the evaluate bond strength of high Relative Rib Area Bars Using beam-end test specimens are compared with the current provisions for development of reinforcement, and the improved design method of bond strength is proposed.

  • PDF

An Experimental Study on the Inelastic Rotation Capacity of Reinforced Concrete Beams with Lateral Reinforcement (횡방향보강근을 갖는 철근콘크리트보의 비탄성 회정능력에 관한 실험적 연구)

  • 연규원;이주나;강민철;윤정민;박찬수
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2000.04a
    • /
    • pp.433-439
    • /
    • 2000
  • Reinforced concrete beams show increased ductile behavior when the compressive concrete is confined with transverse steel. In the inelastic range, the most variations of ductile behaviour are defined the equivalent length of the plastic hinge and the plastic hinge rotation. In an investigation to study the influence of such confinement, sixteen reinforced concrete beams were tested in flexure and the deflections noted at all stages of loading. For all the beams tested, the plastic hinge rotation have been computed and the effect of confinement on the same examined. The conclusions are summarized as follows: The equivalent lengths of the plastic hinge are ranged within the effective depth comparatively. The ability of the plastic hinge rotation of the reinforced concrete beams confined with transverse steel are enlarged when transverse reinforcement content are increased, but the spaces are more important as the shear force are largely increased.

  • PDF

Properties of Fire Endurance of High Performance RC Column by Loaded Heating Test (고성능 RC 기둥의 재하가열시험에 의한 내화 특성)

  • Kim Kyung Min;Kim Ki Hoon;Hwang Yin Seong;Lee Jae Sam;Lee Seong-Yeun;Han Cheon Goo
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2005.05b
    • /
    • pp.57-60
    • /
    • 2005
  • This study discusses spalling and fire enduring performance of high performance concrete (HPC) RC column subjected to loading under heating for 3 hours. According to the test, both the plain concrete and the concrete attached with fire enduring PC panel exceed allowable temperature after 60 minutes due to the exposure of steel bar and falling off of concrete resulting from severe spalling failure. It leads to buckling of main bar and at the same time, occurrence of collapse of plain HPC column member is observed after 2 hours and 1 hour 40 minutes's exposure to fire, respectively. On the other hand, HPC applying both PP fiber of 0.1$\%$ by mass of concrete and PP fiber+lateral confinement by metal lath maintains their original cross section, which is satisfied with the 3 hours fire endurance criteria, by discharging internal vapour pressure and enhanced lateral confinement force.

  • PDF

Application of Steel-tubed Concrete Structures in High-rise Buildings

  • Zhou, Xuhong;Liu, Jiepeng
    • International Journal of High-Rise Buildings
    • /
    • v.8 no.3
    • /
    • pp.161-167
    • /
    • 2019
  • Making full use of material strength, maintaining sufficient ductility of structural components, and ensuring simple and robust connections are crucial to the development of steel-concrete composite structures. The steel-tubed concrete structure uses thin-walled steel tube to provide confinement, so that the strength and ductility of the concrete core are improved. Meanwhile, the thin-walled steel tube is terminated at the beam-column joint to avoid the local buckling problem and simplify the connections between steel tube and RC members. A brief overview of the development of steel-tubed concrete structures is presented. Through the discussion on the structural behavior of steel-tubed concrete and the introduction of typical practical projects, the prospects for future research are highlighted.

Seismic Performance of RC Columns Confined by Outside Lateral Reinforcement (외측 횡보강재로 구속된 철근콘크리트 기둥의 내진성능)

  • Lee, Do Hyung;Oh, Jangkyun;Yu, Wan Dong;Choi, Eunsoo
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.32 no.3A
    • /
    • pp.189-196
    • /
    • 2012
  • In this paper, reinforced concrete columns test has been conducted under repeated lateral load reversals. The test columns have been reinforced with outside lateral confinement members in addition to transverse reinforcements. For this purpose, a strainless steel and a GFRP have been employed for the lateral confinement members. Primary parameters are types, thickness and spacing of the lateral confinement members. Experimental results reveal that columns reinforced with lateral confinement members exhibit improved ductility and energy dissipation capacity in comparison with those unreinforced. It is thus concluded that the present approach can be of a useful scheme for the seismic retrofitting of reinforced concrete columns.

Efficiency of stiffening plates in fabricated concrete-filled tubes under monotonic compression

  • Albareda-Valls, Albert;Carreras, Jordi Maristany
    • Steel and Composite Structures
    • /
    • v.18 no.4
    • /
    • pp.1023-1044
    • /
    • 2015
  • Concrete-filled tubes (CFT), formed by an outer steel tube filled with plain or reinforced concrete inside, have been increasingly used these recent decades as columns or beam-columns, especially for tall buildings in seismic areas due to their excellent structural response. This improved behavior is derived from the effect of confinement provided by the tube, since the compressive strength of concrete increases when being subjected to hydrostatic pressure. In circular CFTs under compression, the whole tube is uniformly tensioned due to the radial expansion of concrete. Contrarily, in rectangular and square-shaped CFTs, the lateral flanges become subjected to in-plane bending derived from this volumetric expansion, and this fact implies a reduction of the confinement effect of the core. This study presents a numerical analysis of different configurations of CFT stub columns with inner stiffening plates, limited to the study of the influence of these plates on the compressive behavior without eccentricity. The final purpose is to evaluate the efficiency in terms of strength and ductility of introducing stiffeners into circular and square CFT sections under large deformation axial loading.

An Experimental Study on the Spatting Resistance of High Performance Concrete with PP Fiber Contents and Lateral Confinement by Metal-Lath (PP섬유 혼입 및 메탈라스 횡구속에 의한 고성능 콘크리트의 폭열방지에 관한 실험적 연구)

  • 황인성;이백수;이병열;양성환;한천구
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2002.05a
    • /
    • pp.557-562
    • /
    • 2002
  • This paper describes the results of spalling by fire prevention of high performance concrete confining with metal-lath and containing PP fiber. According to test results, all the specimens without PP fiber shows entire failure after exposed to fire, while the other specimens confined with metal-lath has somewhat better spatting prevention performance than plain concrete specimens, which only show surface scale spatting combination of PP fiber with confinement of metal-lath leads to favorable spatting resistance. As PP fiber contents and thickness of metal-lath which is confined at concrete specimens increase, residual strength after exposed to fire shows to be increased.

  • PDF

Numerical crack modelling of tied concrete columns under compression

  • Bosco, C.;Invernizzi, S.
    • Computers and Concrete
    • /
    • v.10 no.6
    • /
    • pp.575-586
    • /
    • 2012
  • In the present paper the problem of monotonically compressed concrete columns is studied numerically, accounting for transverse steel reinforcement and concrete cracking. The positive confinement effect of the ties on the core concrete is modeled explicitly and studied in the case of distributed or concentrated vertical load. The main aim is to investigate the influence of transverse reinforcement steel characteristics on the column load carrying capacity and ductility, in order to provide an evaluation about some standards requirements about the class and ductility of steel to be used for ties. The obtained results show that the influence of transverse reinforcement steel class of ductility is negligible both on the column load carrying capacity and on its ductility. Also the dissipated energy is basically unchanged. In view of these evidences, some standards requirements about the steel class of ductility to be used for ties appear to be rather questionable.

Effect of confinement conditions on the stress-strain relations of concrete (구속조건이 콘크리트 응력-변형률 관계에 미치는 영향)

  • Im Seok-been;Han Taek-Hee;Park Nam-Hoi;Kang Young-Jong
    • Proceedings of the KSR Conference
    • /
    • 2004.06a
    • /
    • pp.1211-1220
    • /
    • 2004
  • The confined concrete subjected multi-axial stresses have been known as the strength of concrete increases significantly. Many researchers have studied in confining effects of concrete, and now are studying in many fields. However, there are few passive confinements by steel tube. Although Mander et al. studied the concrete confined by transverse reinforcements, the confinement by steel tube differs from confining of reinforcements. To investigate the influence of concrete strength increased by confining conditions in steel, 51 specimens confined by different shapes and thicknesses of steel tube were tested and compared.

  • PDF