• Title/Summary/Keyword: concrete casting

Search Result 194, Processing Time 0.047 seconds

An Experimental Study for Basic Properties of Mixed Concrete from Multiple Suppliers (콘크리트 혼용타설에 따른 기초 물성에 관한 실험적 연구)

  • Lee, Woo-Jin;Kim, Dong-Soo;Jung, Sung-Hoon;Yang, Hyun-Min
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2022.11a
    • /
    • pp.59-60
    • /
    • 2022
  • According to the recent issue regarding the shortage of concrete supply, it is common to appoint various concrete suppliers and allow mixed pouring according to the specification requirements. Moreover, if the concrete is mixed inevitably a strength and property test is carried out for verification. Therefore, in this research, multiple concrete suppliers were selected and each required raw material was collected for the test of all variable mixed design. Through the test, the property of the unhardened and hardened concrete was quantitatively evaluated.

  • PDF

An Experimental Study on the Characteristics of Compressive Strength of Antiwashout Underwater Concrete with Curing Water (양생수에 따른 수중불분리콘크리트의 압축강도특성에 관한 실험적 연구)

  • 윤재범;고창섭;김명식;장희석
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 1999.10a
    • /
    • pp.135-138
    • /
    • 1999
  • The objective of this study is to investigate the compressive strength property of antiwashout underwater concrete with curing water through experimental researches. Type of casting and curing water(fresh water, sea water) are used as main experimental parameter, additionally a few variables affecting compressive strength property are used ; water-cement ratio (45%, 48%, 50%, 52%, 55%), and unit weight of admixtures (antiwashout underwater agent ; 0.6%, 0.8%, 1.0%, 1.2%, 1.4% of unit weight of water, superplasticizer ; 0.5%, 1.0%, 1.5%, 2.0%, 2.5% of unit weight of cement)) Compressive strength level of antiwashout underwater concrete which was cast and cured in fresh water is higher than other one. Consequently, incremental modulus has to increase when the antiwashout underwater concrete is made use of underwater work from ocean.

  • PDF

Application of Waste Foundry Sand to Concrete-Based Product Having Low Water Cement Ratio (낮은 W/C비를 갖는 콘크리트 제품에 대한 폐주물사의 적용)

  • 이대경;김동주;조홍준;김진만
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2001.11a
    • /
    • pp.79-84
    • /
    • 2001
  • Because the WFS(Waste Foundry Sand), by-product of a casting factory, is generally a smaller particle than a fine aggregate, it has a bad influence on quality of concrete. Especially, the grading of aggregate is a very important factor in the case of concrete-based products having low water cement ratio manufactured by vibration and pressing method. Therefore, it is necessary to use WFS with the suitable grading of aggregate that it don't has a bad Influence on the quality of concrete-based products. This study investigated the suitable using proportion of WFS by means of the composition method of aggregate suggested by Driscoll. The results showed that it was desirable to use 10% of WFS since higher strength was developed with that amount.

  • PDF

Monitoring of Early-age Behavior of Concrete Retaining Wall by FBG Sensors (FBG센서를 이용한 콘크리트옹벽 초기재령 특성 모니터링 연구)

  • Jang, Il-Young;Yun, Ying-Wei;Kim, Young-Gune
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2009.05a
    • /
    • pp.89-90
    • /
    • 2009
  • FBG temperature sensor and strain sensor has been used to monitoring shrinkage and temperature of concrete retaining wall in construction site in its casting early age. The test results indicate that this monitoring method is a practical method for monitoring concrete at very early age. The monitoring technique used in this research could be extended to monitor shrinkage and temperature for mass concrete structure.

  • PDF

Effect of Specimen Sizes and Shapes on Compressive Strength of Concrete (콘크리트의 압축강도에 공시체의 크기와 형상이 미치는 영향)

  • 최중철;양은익;이성태;김명유;이광교
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2003.11a
    • /
    • pp.285-288
    • /
    • 2003
  • The compressive strength of concrete is used as the most fundamental and important material property when reinforced concrete structures are designed. It has been problem to use this value, however, because the control specimen sizes and shapes are different from every country. In this study, the effect of specimen shapes and sizes on compressive strength of concrete members was experimentally investigated based on fracture mechanics. Experiments for the mode I failure was earned out by using cylinder, cube, and prism specimens. The test results are curve fitted using least square method(LSM) to obtain the new parameters for the modified size effect law(MSEL). The analysis results show that the effect of specimen sizes and shapes on ultimate strength is apparent. The results also show stronger size effect in member when the casting direction is perpendicular to loading direction

  • PDF

Fundamental Study on Visualization of Bar Placing Records Using Augmented Reality (증강현실을 활용한 배근 이력 가시화 방안에 관한 기초적 연구)

  • Park, U-Yeol
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2018.11a
    • /
    • pp.126-127
    • /
    • 2018
  • Rebar work is important in terms of cost and process of reinforced concrete construction along with formwork and concrete construction, and the quality of reinforced concrete construction has a great influence on the safety and durability of the structure. Therefore it is important to thoroughly inspect the steel reinforcement after casting the concrete because it is difficult to confirm the actual condition of the reinforcement. The purpose of this study is to develop an augmented reality system to visualize the records of bar placing work, which is increasingly utilized in the construction field. In order to improve maintenance of reinforced concrete, this study suggests a plan to effectively manage the drawing information including the structural drawing, the placing drawing, and the photographed image at the construction and inspection stage, and develop a system that utilizes augmented reality technology that can display the state of the inside of a concrete structure by superimposing it on actual environment.

  • PDF

TEMPERATURE CONTROL AND COMPRESSIVE STRENGTH ASSESSMENT OF IN-PLACE CONCRETE STRUCTURES USING THE WIRELESS TEMPERATURE MEASURING SYSTEM BASED ON THE UBIQUITOUS SENSOR NETWORK

  • Ho Kyoo JO;Hyung Rae KIM;Tae Koo KIM
    • International conference on construction engineering and project management
    • /
    • 2009.05a
    • /
    • pp.794-799
    • /
    • 2009
  • The temperature control of in-place concrete is the most important factor for an early age of curing concrete. Heat stress of mass concrete caused by the heat of hydration can induce the crack of concrete, and a frost damage from cold weather casting concrete results defect on compressive strength and degradation of durability. Therefore, success and failure of concrete work is dependant on the measurement and control of concrete temperature. In addition, the compressive strength assessment of in-place concrete obtained from the maturity calculated from the history of temperature make a reduction of construction cycle time, possible. For that purpose, wireless temperature measuring system was developed to control temperature and assess strength of concrete. And, it was possible to monitor the temperature of concrete over 1km apart from site office and to take a proper measure; mesh-type network was developed for wireless sensor. Furthermore, curing control system that contains the program capable to calculate the maturity of concrete from the history of temperature and to assess the compressive strength of concrete was established. In this study, organization and practical method of developed curing control system are presented; base on in-place application case.

  • PDF

Bonding of nano-modified concrete with steel under freezing temperatures using different protection methods

  • Yasien, A.M.;Bassuoni, M.T.
    • Computers and Concrete
    • /
    • v.26 no.3
    • /
    • pp.257-273
    • /
    • 2020
  • Concrete bond strength with steel re-bars depends on multiple factors including concrete-steel interface and mechanical properties of concrete. However, the hydration development of cementitious paste, and in turn the mechanical properties of concrete, are negatively affected by cold weather. This study aimed at exploring the concrete-steel bonding behavior in concrete cast and cured under freezing temperatures. Three concrete mixtures were cast and cured at -10 and -20℃. The mixtures were protected using conventional insulation blankets and a hybrid system consisting of insulation blankets and phase change materials. The mixtures comprised General Use cement, fly ash (20%), nano-silica (6%) and calcium nitrate-nitrite as a cold weather admixture system. The mixtures were tested in terms of internal temperature, compressive, tensile strengths, and modulus of elasticity. In addition, the bond strength between concrete and steel re-bars were evaluated by a pull-out test, while the quality of the interface between concrete and steel was assessed by thermal and microscopy studies. In addition, the internal heat evolution and force-slip relationship were modeled based on energy conservation and stress-strain relationships, respectively using three-dimensional (3D) finite-element software. The results showed the reliability of the proposed models to accurately predict concrete heat evolution as well as bond strength relative to experimental data. The hybrid protection system and nano-modified concrete mixtures produced good quality concrete-steel interface with adequate bond strength, without need for heating operations before casting and during curing under freezing temperatures down to -20℃.

공장형 일관 제작 시스템에 의한 콘크리트 케이슨 다단계 제작 및 운반공법 개발

  • 박정일;이원표;하성욱
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 1999.04a
    • /
    • pp.821-824
    • /
    • 1999
  • 콘크리트 케이슨 제작장(Casting Bed)내에 케이슨의 제작 및 이동경로가 되는 이동통로(Trough)를 형성하고 거푸집과 이동통로를 겸할 수 있도록 고안한 소핏폼(Soffit Form)을 설치함으로써, 제작된 케이슨 하부로 케이슨 부양용 에어로 고(Aero Go)가 양방향으로 자유로이 이동할수 있게 하여 제작에서 운반까지의 각 단계별 공정이 일직선상에서 공장식 연속 조립공정으로 진행되며, 또한 별도의 대차 및 회수시설이 불필요한 공장형 일관 제작 시스템에 의한 다단계 케이슨 제작, 운반 및 진수방법이다.

  • PDF

Influences of Construction Conditions on the Properties of Cement Mortars in Floors Using Expansion Agent (팽창재를 사용하는 바닥 모르타르의 특성에 미치는 시공요인의 영향)

  • 표대수;정성철;송명신;홍상희;한천구
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2000.10b
    • /
    • pp.925-928
    • /
    • 2000
  • In this paper, physical properties of cement mortar for floor using expansion agent are discussed varied with mixing time and curing temperature, delivery time and content of added water for preventing fluidity loss. According to experimental results, slump loss shows high with elapse of time And as curing temperature goes up, it also show high when curing temperature goes up and time lag between mixing and casting increases. As curing temperature goes down, drying shrinkage shows to be decreased. But it shows decline tendency with increase of added water content.