• Title/Summary/Keyword: concrete barrier

Search Result 128, Processing Time 0.021 seconds

Large Scale Applications of Nanocellulosic Materials - A Comprehensive Review -

  • Lindstrom, Tom;Naderi, Ali;Wiberg, Anna
    • Journal of Korea Technical Association of The Pulp and Paper Industry
    • /
    • v.47 no.6
    • /
    • pp.5-21
    • /
    • 2015
  • The common production methods of nanocellulosic (cellulosic nanofibrils, CNF) materials from wood are being reviewed, together with large scale applications and particularly papermaking applications. The high energy demand for producing CNF has been one particular problem, which has been addressed over the years and can now be considered solved. Another problem was the clogging of homogenizers/microfluidizers, and the different routes to decrease the energy demand. The clogging tendency, related to the flocculation tendency of fibres is discussed in some detail. The most common methods to decrease the energy demand are TEMPO-oxidation, carboxymethylation and mechanical/enzymatic pre-treatments in the order of increased energy demand for delamination. The rheology characteristics of CNF materials, i.e. the high shear viscosity, shear thinning and the thixotropic properties are being illuminated. CNF materials are strength adjuvants that enhance the relative bonded area in paper sheets and, hence increase the sheet density and give an increased strength of the paper, particularly for chemical pulps. At the same time papers obtain a lower light scattering, higher hygroexpansion and decreased air permeability, similar to the effects of beating pulps. The negative effects on drainage by CNF materials must be alleviated through the appropriate use of microparticulate drainage aids. The use of CNF in films and coatings is interesting because CNF films and coatings can provide paper/board with good oxygen barrier properties, particularly at low relative humidities. Some other high volume applications such as concrete, oil recovery applications, automotive body applications and plastic packaging are also briefly discussed.

Field survey of slope hazards mitigation method in Muju-Jangsu area (무주-장수지역에 적용된 급경사지재해 대응공법 현장조사)

  • Song, Young-Suk;Cho, Yong-Chan;Chae, Byung-Gon;Kim, Kyung-Su;Kim, Man-Il
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2009.03a
    • /
    • pp.1053-1059
    • /
    • 2009
  • In this study, slope hazards mitigation methods for a natural terrain are systematically classified to survey the mitigation methods and develop a data base system. Also, field survey sheets which can be recorded the features of mitigation methods installed in the natural slope are developed. The slope hazards mitigation methods in the natural slope are classified as hillside part method and valley part method. The slope part sheet and the valley part sheet are also drawn up for field survey. As the result of the filed survey of mitigation methods about 50 points in Muju and Jangsu area, grass painting and slope covering methods are dominant in case of slopes part. In case of valley part, slit dam, concrete check dam and slope foot barrier are applied simultaneously.

  • PDF

A Study on the Prospect of the Maritime Transport Market Integration in the Northeast Asia

  • Kim, Tae-Seung
    • Journal of Navigation and Port Research
    • /
    • v.30 no.7
    • /
    • pp.585-590
    • /
    • 2006
  • Though the issue on the integration of maritime transport market in Northeast Asia has a long history, there has never been any notable progress. Especially the lack of country-wise analysis on the barriers of market integration appears as a serious problem for more concrete discussion and the design of the roadmap for market integration. This study analyzes the maritime market of each country in the aspect of infrastructure provision, the development of the industry, change of institutions, and network connectivity and compare the competitiveness of 3 countries in the Northeast maritime market. Furthermore this study analyzes the barriers for market integration on the basis of bilateral relation, i.e. Korea-Japan, Korea-China and Japan-Korea. Based on these analyses, this study finds out the fact that the most serious barrier for market integration among 3 countries is the egocentric policies for the protection of industries in each country rather than any other institutional or physical barriers. In conclusion, this study argues that 3 countries should try to find out a third policy alternative which can make 3 countries enjoy the win-win game, such as route integration among 3 countries and joint venture for the liners operated in the region.

Resonance tunneling phenomena by periodic potential in type-II superconductor

  • Lee, Yeong Seon;Kang, Byeongwon
    • Progress in Superconductivity and Cryogenics
    • /
    • v.16 no.1
    • /
    • pp.1-5
    • /
    • 2014
  • We calculated the resonance tunneling energy band in the BCS gap for Type-II superconductor in which periodic potential is generated by external magnetic flux. In this model, penetrating magnetic flux was assumed to be in a fixed lattice state which is not moving by an external force. We observed the existence of two subbands when we used the same parameters as for the $Nd_{1.85}Ce_{0.15}CuO_X$ thin film experiment. The voltages at which the regions of negative differential resistivity (NDR) started after the resonant tunneling ended were in a good agreement with the experimental data in the field region of 1 T - 2.2 T, but not in the high field regions. Discrepancy occurred in the high field region is considered to be caused by that the potential barrier could not be maintained because the current induced by resonant tunneling exceeds the superconducting critical current. In order to have better agreement in the low field region, more concrete designing of the potential rather than a simple square well used in the calculation might be needed. Based on this result, we can predict an occurrence of the electromagnetic radiation of as much difference of energy caused by the 2nd order resonant tunneling in which electrons transit from the 2nd band to the 1st band in the potential wells.

Assessment Of Radionuclide Release Rates From The Engineered Barriers And The Quantification Of Their Uncertainties For A Low- And Intermediate-Level Radioactive Waste Repository (방사성폐기물처분장 인공방벽으로부터의 핵종유출률 평가 및 불확실도 정량화)

  • Cho, W.J.;Lee, J.O.;Hahn, P.S.;Park, H.H.
    • Nuclear Engineering and Technology
    • /
    • v.26 no.1
    • /
    • pp.78-89
    • /
    • 1994
  • The radionuclide release rates from the engineered barrier composed of concrete structure and clay-based backfill in a low and intermediate level waste repository were assessed. Four types of release pathway were considered, and the contribution of each pathway to the total release were analyzed. To quantify the effect of uncertainties of input parameter values on the assessment of radionuclide release rates, the Latin Hypercube sampling method was used, and the resulting release rate distribution were determined through a goodness-of-fit test. Finally, the ranges of maxi-mum release rates ore estimated statistically with a confidence level of 95%.

  • PDF

Swelling and hydraulic characteristics of two grade bentonites under varying conditions for low-level radioactive waste repository design

  • Chih-Chung Chung;Guo-Liang Ren;I-Ting Chen;Che-Ju, Cuo;Hao-Chun Chang
    • Nuclear Engineering and Technology
    • /
    • v.56 no.4
    • /
    • pp.1385-1397
    • /
    • 2024
  • Bentonite is a recommended material for the multiple barriers in the final disposal of low-level radioactive waste (LLW) to prevent groundwater intrusion and nuclear species migration. However, after drying-wetting cycling during the repository construction stage and ion exchange with the concrete barrier in the long-term repository, the bentonite mechanical behaviors, including swelling capacity and hydraulic conductivity, would be further influenced by the groundwater intrusion, resulting in radioactive leakage. To comprehensively examine the factors on the mechanical characteristics of bentonite, this study presented scenarios involving MX-80 and KV-1 bentonites subjected to drying-wetting cycling and accelerated ion migration. The experiments subsequently measured free swelling, swelling pressure, and hydraulic conductivity of bentonites with intrusions of seawater, high pH, and low pH solutions. The results indicated that the solutions caused a reduction in swelling volume and pressure, and an increase in hydraulic conductivity. Specifically, the swelling capability of bentonite with drying-wetting cycling in the seawater decreased significantly by 60%, while hydraulic conductivity increased by more than three times. Therefore, the study suggested minimizing drying-wetting cycling and preventing seawater intrusion, ensuring a long service life of the multiple barriers in the LLW repository.

The Efficiency and Improvement of the Highway Wild-Life Fences for Decrease of Mammals Road-kill - In Case of Manjong~Hongchun Section on Jungang Highway - (포유류 로드킬 저감을 위한 고속도로 유도울타리 효율성 및 개선방안 연구 - 중앙고속도로 만종~홍천 구간을 사례로 -)

  • Song, Jeong-Seok;Lee, Kyong-Jae;Ki, Kyong-Seok;Jun, Ik-Yo
    • Korean Journal of Environment and Ecology
    • /
    • v.25 no.5
    • /
    • pp.649-657
    • /
    • 2011
  • This study had targeted the Manjong Junction~Hongchun interchange section of Jungang highway in order to analyze the efficiency and improvement of the highway wild-life fences. Being analyzed wild-life fence as an effective facility for the prevention of road-kill, it had founded that the wild animals did not jump over even the two layer guardrail, concrete barrier and noise barrier, fence for rock fall. For the section with high road-kill decrease effect after installing the wild-life fence, the effect was higher at wild-life fence with the height of 1.0m where the door had not been installed and the well connected points of road facility than the area with fence height of 1.5m. The road-kill decrease effect was also high at the well managed areas even if the door has not been installed. Also, road-kill had occurred by concentrating around the end of wild-life fence after installing the fence, Moreover road-kill had also occurred around the cutting section. The door of wild-life fence had higher amount of road-kill occurrence as the installation interval was closer. it was analyzed that the door management has a lot of effect on road-kill decrease. The fence for rock fall, two layer guardrail and concrete barrier having the effect of wild-life fence installed on the road would have to be installed by connecting with wild-life fences through proper facility improvement. Although the door should not be installed if possible, it should be installed as automatic door or gravity door to prevent the door from leaving the door open. An escape route has to be formed for the prompt escape away from the road for the animals entered through the ending section of the fence. The eco-corridor has to be made by restoring the soil layer of dual purpose eco-corridor forming a planting area. Also, the dead body after the accident has to be disposed to the outer section of the road immediately in order to prevent the secondary road-kill by the predator from the road-kill. The fence has to be installed as 500m or longer in both ways, in other words 1,000m or longer, from the targeted spot of minimum accident prevention while connecting up to the bridge or box culvert, etc that are next road facilities if possible to guide wild animals safely to the eco-corridor.

Effect of Passing Aged Years and Coating Thickness on Corrosion Properties of Reinforcing Steel in Mortar (W/C:0.5) (모르타르(W/C:0.5)내의 철근의 부식 특성에 미치는 재령 년수와 피복두께의 영향)

  • Moon, Kyung-Man;Lee, Sung-Yul;Jeong, Jin-A;Lee, Myeong-Hoon;Baek, Tae-Sil
    • Corrosion Science and Technology
    • /
    • v.14 no.2
    • /
    • pp.99-105
    • /
    • 2015
  • The structures of reinforced concrete have been extensively increased with rapid development of industrial society. Futhermore, these reinforced concretes are easy to expose to severe corrosive environments such as seawater, contaminated water, acid rain and seashore etc.. Thus, corrosion problem of steel bar embedded in concrete is very important in terms of safety and economical point of view. In this study, specimens having six different coating thickness (W/C:0.5) were prepared and immersed in flowing seawater for five years to evaluate the effect of coating thickness and immersion time on corrosion property. The polarization characteristics of these embedded steel bars were investigated using electrochemical methods such as corrosion potential, anodic polarization curve, and impedance. At the 20-day immersion, the corrosion potentials exhibited increasingly nobler values with coating thickness. However, after 5-yr. immersion their values were shifted in the negative direction, and the relationship between corrosion potential and coating thickness was not shown. Although 5-yr. immersion lowered corrosion potential, 5-yr. immersion did not increase corrosion rate. In addition, after 5-yr. immersion, the thinner cover thickness, corrosion current density was decreased with thinning coating thickness. It is due to the fact that ease incorporation of water, dissolved oxygen and chloride ion into a steel surface caused corrosion and hence, leaded to the formation of corrosion product. The corrosion product plays the role as a corrosion barrier and increases polarization resistance. The corrosion probability evaluated depending on corrosion potential may not be a good method for predicting corrosion probability. Hence, the parameters including cover thickness and passed aged years as well as corrosion potential is suggested to be considered for better assessment of corrosion probability of reinforced steel exposed to partially or fully in marine environment for long years.

A Study on Stability and Economic feasibility according to Height on the MSE Wall with Pacing Panel (고속도로 도로부에 시공된 패널식 보강토 옹벽의 높이별 안전율과 경제성 검토)

  • Park, Min-Cheol
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.19 no.5
    • /
    • pp.54-63
    • /
    • 2018
  • In this study, the stability and economic feasibility of a MSE (Mechanically stability earth) wall with a pre-cast concrete pacing panel was investigated for a standard section of highway. Based on the design criteria, the MSE walls of the panel type were designed considering the load conditions of the highway, such as the dead load of the concrete pavement, traffic load, and impact load of the barrier. The length of the ribbed metal strip was arranged at 0.9H according to the height of the MSE walls. Because the length of the reinforcement was set to 0.9H according to the height of the MSE wall, the external stability governed by the shape of the reinforced soil was not affected by the height increase. The factor of safety (FOS) for the bearing capacity was decreased drastically due to the increase in self-weight according to the height of the MSE wall. As a result of examining the internal stability according to the cohesive gravity method, the FOS of pullout was increased and the FOS of fracture was decreased. As the height of the MSEW wall increases, the horizontal earth pressure acting as an active force and the vertical earth pressure acting as a resistance force are increased together, so that the FOS of the pullout is increased. Because the long-term allowable tensile force of the ribbed metal strip is constant, the FOS of the fracture is decreased by only an increase in the horizontal earth pressure according to the height. The panel type MSE wall was more economical than the block type at all heights. Compared to the concrete retaining wall, it has excellent economic efficiency at a height of 5.0 m or more.

Prediction of Fatigue Life for a 270,000 kl LNG Storage Tank According to Shape of Corner-protection Knuckle (너클 형상에 따른 LNG 저장탱크 코너프로텍션 피로수명 예측)

  • Lee, Seung Rim;Lee, Kyong Min;Kim, Han Sang
    • Journal of the Korean Institute of Gas
    • /
    • v.18 no.2
    • /
    • pp.69-72
    • /
    • 2014
  • If LNG is leaked from 9% Ni steel inner tank by damage, LNG is retained by outer concrete tank. Then large tensile stress can be caused at cylindrical bottom of outer tank by temperature difference between outer and inner surface of outer tank. Therefore, in order to reduce the tensile stress is caused by temperature difference, corner-protection is installed with insulation and 9% Ni steel as a second barrier. In this paper, using finite element method, structural analysis was performed for rectangular and circular shape of knuckle and based on the results, fatigue life of welds of corner protection was predicted. As a consequence of structural analysis, safety factor of circular knuckle shows 33% bigger than rectangular one shows, and circular knuckle has 25% bigger fatigue life time than rectangle has. These results can be applied to life time assessment and design optimization in the future.