• Title/Summary/Keyword: concrete/reinforced concrete

Search Result 7,285, Processing Time 0.035 seconds

Service Life Variation for RC Structure under Carbonation Considering Korean Design Standard and Design Cover Depth (국내설계기준과 피복두께를 고려한 RC 구조물의 탄산화 내구수명의 변동성)

  • Kim, Yun-Shik;Kwon, Seung-Jun
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.25 no.5
    • /
    • pp.15-23
    • /
    • 2021
  • In this paper, service life for RC(Reinforced Concrete) substructure subjective to carbonation was evaluated through deterministic and probabilistic method considering field investigation data and Design Code(KDS 14 20 40). Furthermore changes in service life with increasing COV(Coefficient of Variation) and equivalent safety index meeting the same service life were studied. From the investigation, the mean and its COV of cover depth were evaluated to 70.0 ~ 90.0 mm and 0.2, respectively. With intended failure probability of 10.0 % and 70 mm of cover depth, service life decreased to 137 years, 123 years, and 91 years with increasing COV of 0.05, 0.1, and 0.2, respectively. In the case of 80 mm of cover depth, it changes to 179 years, 161 years, and 120 years with increasing COV. The equivalent safety index meeting the same service life from deterministic method showed 1.66 ~ 3.43 for 70 mm of cover depth and 1.61 ~ 3.24 for 80 mm of cover depth, respectively. The various design parameters covering local environment and quality condition in deterministic method yields a considerable difference of service life, so that determination of design parameters are required for exposure conditions and parameter variation.

A Study of Minimum Reinforcement Ratio of Singly Reinforced Beamy (단철근 보의 최소철근비에 대한 고찰)

  • Choi, Seung-Won
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.22 no.4
    • /
    • pp.396-402
    • /
    • 2021
  • A cross section in RC flexural members must be designed to satisfy flexural strength and ductility requirements simultaneously. In design provisions, ductile behavior is ensured by a sufficient reinforcement ratio or depth of the neutral axis. If the reinforcement ratio is less than the balanced reinforcement ratio, ductile behavior is secured, and this value is theoretically the maximum reinforcement ratio. But for a cross section with less steel, brittle failure can occur regardless of ductile behavior because of unqualifying a cracking moment. Recently, designs with a minimum steel ratio have been increasing along with the use of high-strength material, so in design provisions, a minimum amount of reinforcement is suggested. In the KCI(2012) standard, a minimum amount of reinforcement was suggested in terms of strength of steel and concrete. But in the revised KCI(2017) standard, a minimum amount of reinforcement was suggested by a relationship between the design flexural strength and cracking moment indirectly. This code can reflect the effect of cover thickness, but a material model must be defined. Therefore, the minimum amount of reinforcement in KCI(2012) and KCI(2017) was examined, and a rational review method was studied by parametric analysis.

A Study on the Noise and Vibration Damping Performance of RC Hollow Core Slab (중공형 RC 슬래브의 소음 및 진동 감쇠성능에 대한 연구)

  • Kim, Dong Baek;Kim, In Bae;Kim, Jong Hoon;Lee, Jae Won
    • Journal of the Society of Disaster Information
    • /
    • v.15 no.2
    • /
    • pp.292-300
    • /
    • 2019
  • Purpose: To reduce the noise and vibration of reinforced concrete slab structures, the damping performance is to be performed experimentally after installing hollow core or filling it with liquid. Method: Using the hollow rate as an experimental variable, the damping ratio and stiffness of each test specimen at impact load are obtained to determine the difference between the damping ratio and stiffness of the numerical analysis. In addition, the damping effects are reviewed by comparing the difference in the damping ratio and stiffness of a test specimen filled with liquid 50% of the study. Results: Since the difference in resistance between a specimen with or without hollow core is 5%, it is judged that there is no structural problem, and the injection of liquid into the hollow core can increase the damping ratio, which can reduce noise or vibration. Conclusion: At less than 20% of hollow rate, there was little damping effect, and at 30%, damping effect was found. However, if liquid is injected into the hollow core of the specimen, damping rate is shown to increase, and the injection of liquid into the hollow part is believed to reduce noise or vibration.

Shear Strength of SFRC Deep Beam with High Strength Headed Reinforcing Tensile Bars (고강도 확대머리 인장철근을 가지는 SFRC 깊은 보의 전단강도)

  • Kim, Young-Rok;Lee, Chang-Yong;Kim, Seung-Hun
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.23 no.5
    • /
    • pp.111-117
    • /
    • 2019
  • Shear experiments were carried out to evaluate shear performance of SFRC deep beams with end-anchorage of SD600 high strength headed reinforcing tensile bars. The experimental variables include the end-anchorage methods of tensile bars (headed bar, straight bar), the end-anchorage lengths, and the presence of shear reinforcement. Specimens with a shear span ratio of 1 showed a pattern of the shear compression failure with the slope cracks progressed after the initial bending crack occurred. Specimens with end-anchorage of headed bars (H-specimens) showed a larger shear strengths of 5.6% to 22.4% compared to straight bars (NH-specimens). For H-specimens, bearing stress reached 0.9 to 17.2% of the total stress of tensile bars up to 75% of the maximum load, and reached 22.4% to 46%. This shows that the anchorage strength due to the bearing stress of headed bars has a significant effect on shear strength. The experimental shear strength was 2.68 to 4.65 times the theoretical shear strength by the practical method, and the practical method was evaluated as the safety side.

Seismic Fragility Analysis of Rahmen-type Continuous Bridge Supported by High Piers (고교각으로 지지된 라멘형 연속교의 지진취약도 분석)

  • Kang, Pan-Seung;Hong, Ki-Nam;Yeon, Yeong-Mo
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.23 no.5
    • /
    • pp.84-95
    • /
    • 2019
  • This paper reports the process of seismic fragility analysis for the rahman-type continuous bridge system. The target structure was the five span highway bridge with maximum pier hight of 72m. OpenSees software was used for the nonlinear time history analysis. In this study, 50 ground motions are considered for nonlinear time history analysis. For each ground motion, PGA was scaled from 0.1g to 2.0g with intervals of 0.1g in order to consider a wide range of the seismic intensity measure. In addition, yield displacement and ultimate displacement of each pier were calculated through section analysis. Based on the result of non linear time history analysis and section analysis, damage condition of target bridge was classified according to the definition of damage condition proposed by Barbat et al. As a result, it was predicted that Extensive Damage occurred at P1 when 0.731 g earthquake occurred in the longitudinal direction. Based on the seismic fragility analysis results, it is found that the probability of occurrence of Extensive Damage in the 4,800 - year period earthquake was about 4.2%. Therefore the target bridge has enough safety for earthquake.

A study on development of disaster-risk assessment criteria for steep slope -Based on the cases of NDMS in Ministry of Interior and Safety- (급경사지 재해위험도 평가 기준 개선 방안 연구 -행정안전부 급경사지 관리시스템 사례를 중심으로-)

  • Suk, Jae-Wook;Kang, Hyo-Sub;Jeong, Hyang-Seon
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.20 no.9
    • /
    • pp.372-381
    • /
    • 2019
  • In this study, the National Disaster Management System (NDMS) was analyzed to evaluate the disaster impact assessment standards for steep slopes. Problems in the assessment methods and systems were discovered, which could be reasons for poor reliability. The disaster-risk evaluation index needs improvement to evaluate various types of retaining walls, such as concrete/reinforced soil walls and reinforcing stone masonry. Additionally, using the same score for overturning, bulging, and efflorescence could be reasons for poor reliability, and different weighting factors are needed. Assessment methods are needed to subdivide the social influence evaluation index while considering environmental conditions of steep slopes, such as railroads and reservoirs. For the evaluation of steep slopes, standards for start and end points of steep slopes should be created for effective management, and disaster impact assessment needs to be performed after redevelopment from an advanced index for protection and reinforcement. These problems were derived from a current evaluation system, so a disaster impact assessment is necessary to supplement the results of this study.

Proposal for Safety Management of Formwork Construction Using IT Technology (IT 기술을 이용한 거푸집 동바리공사 안전관리 제안)

  • Jeon, Kyong-Deck;Shin, Seung-Jung
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.20 no.6
    • /
    • pp.93-99
    • /
    • 2020
  • In terms of construction work, the construction cost is lower than the importance of the construction, and since it is demolished after the completion of the construction, it is treated as a relatively small proportion compared to other construction types. Construction engineers who actually worked on the site talk about the safety of the construction work as the most important work of the various processes to ensure the quality and safety of the construction work. However, it is also true that safety management is difficult for temporary construction because various types of temporary materials are installed at various sites at the same time as construction progresses, and the main construction is carried out using them. Safety accidents in construction work are not much different even if they are carried out in temporary construction. The importance and safety of construction work cannot be neglected in view of the recent trend of large-scale construction, multi-purpose, excavation of large-scale underground spaces, and construction trends that are changing to skyscrapers. The purpose of this research is to secure the safety of Dongbar among the temporary materials used in construction work by using IT convergence technology, and to propose safety management to prevent safety accidents in the construction work.

Productivity Analysis of Reinforced Concrete Works and Tower Crane Working Ratio for High-rise Apartment Buildings (초고층 공동주택 RC 공사의 생산성 및 타워크레인 가동율 분석)

  • Kwon, Jihun;Huh, Youngki
    • Korean Journal of Construction Engineering and Management
    • /
    • v.22 no.1
    • /
    • pp.55-62
    • /
    • 2021
  • The productivity of rebar-work and form-work was analyzed with data collected from an actual high-rise construction project, and the actual utilization rates of three tower cranes were also investigated. It was found that the average productivity of the form-work increased from 12.00~8.71(㎡/man·day) in the underground and above-ground/lower-floor to 11.94~20.73(㎡/man·day) in the standard floor. Comparing the productivity of core area to outer, the former was found to be about 11% higher. Moreover, the rebar-work productivity of the outer area(1.12 ton/man·day) was approximately 9.6% higher than that of the core area for the standard floor. The average utilization rates of three TC were surveyed to be about 63.49%, and it was revealed that rainy weather(6.1%), strong winds(6.1%), holidays(17.8%), TC lifting work(5.8%), and other failures and repairs(0.07%) were the causes of non-operation. These research results are expected to be beneficial data in planning and managing the process of high-rise RC construction works in the future.

A Study on the Improvement of Member Evaluation Method in the Condition Evaluation of Reinforced Concrete Buildings (철근콘크리트 건축물의 상태평가 중 부재평가방법 개선에 관한 연구)

  • Woo, Hye-Sung;Yi, Waon-Ho;Hwang, Kyung-Ran;Lee, Kwan-Hyeong
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.25 no.3
    • /
    • pp.85-91
    • /
    • 2021
  • Type 1 and type 2 buildings must regularly conduct precise safety inspections and precise safety diagnosis for the safety and maintenance of facilities, and the safety grade of the building is determined according to the results of the implementation. In addition, the cycle of inspection and diagnosis is determined according to the safety grade of the building. In order to determine the safety grade of the building, a precise safety inspection conducts condition evaluation, and a precise safety diagnosis conducts condition evaluation and safety evaluation. Therefore, since the inspection and diagnosis cycle is determined according to the safety grade of the building, the condition evaluation and safety evaluation must be precise. However, in the case of member unit evaluation, which is the first step in evaluating the current condition, the evaluation grade is determined by using the representative value of the measurement result, and this may result in an error in the evaluation grade. To solve this problem, this study analyzed evaluation criteria for each evaluation item and presented evaluation criteria using inequalities to respond to measurement results and evaluation scores. In addition, we present a functional formula that can reflect performance scores for each evaluation item.

Effects of Seismic Loads with Different Return Period on Residential Building with RC Shear Wall Structure under Construction (주거용 RC 벽식 건물의 시공 중 재현주기에 따른 지진하중의 영향)

  • Choi, Seong-Hyeon;Kim, Jea-Yo
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.26 no.2
    • /
    • pp.43-50
    • /
    • 2022
  • Even though the structural safety is confirmed in the design stage, the structural safety is not guaranteed in the construction stage because the structural system is not completed. In addition, since the construction period is shorter than the period of use of the building after completion, it is excessive to apply the same seismic load to the construction stage as in the design stage. ASCE 37-14 presents the concept of seismic load reduction factor during construction, but does not provide a clear application method. Therefore, in this study, the seismic load reduced according to the return period was applied to the example model of a residential middle-rise RC building. The construction stage of the example model was divided into five-story units, and seismic load with the change of the return period was applied to the construction stage models to analyze the change of seismic load during construction and to check the sectional performances of structural members. By comparing the design strength ratio of the shear wall at the design stage and the construction stage, the range of seismic load magnitudes that can assure the safety during construction of a residential middle-rise RC building was analyzed in terms of the return period.