DOI QR코드

DOI QR Code

Service Life Variation for RC Structure under Carbonation Considering Korean Design Standard and Design Cover Depth

국내설계기준과 피복두께를 고려한 RC 구조물의 탄산화 내구수명의 변동성

  • 김윤식 (한남대학교 건설시스템공학과) ;
  • 권성준 (한남대학교 건설시스템공학과)
  • Received : 2021.06.01
  • Accepted : 2021.10.10
  • Published : 2021.10.30

Abstract

In this paper, service life for RC(Reinforced Concrete) substructure subjective to carbonation was evaluated through deterministic and probabilistic method considering field investigation data and Design Code(KDS 14 20 40). Furthermore changes in service life with increasing COV(Coefficient of Variation) and equivalent safety index meeting the same service life were studied. From the investigation, the mean and its COV of cover depth were evaluated to 70.0 ~ 90.0 mm and 0.2, respectively. With intended failure probability of 10.0 % and 70 mm of cover depth, service life decreased to 137 years, 123 years, and 91 years with increasing COV of 0.05, 0.1, and 0.2, respectively. In the case of 80 mm of cover depth, it changes to 179 years, 161 years, and 120 years with increasing COV. The equivalent safety index meeting the same service life from deterministic method showed 1.66 ~ 3.43 for 70 mm of cover depth and 1.61 ~ 3.24 for 80 mm of cover depth, respectively. The various design parameters covering local environment and quality condition in deterministic method yields a considerable difference of service life, so that determination of design parameters are required for exposure conditions and parameter variation.

본 연구에서는 탄산화에 노출된 하부 콘크리트 구조물을 대상으로, 실태조사 결과와 국내 시방서를 고려하여 결정론 및 확률론적 방법에 따른 내구수명을 도출하였다. 또한 변동계수의 변화에 따른 내구수명의 변화와 결정론적 해석 결과와 비슷한 결과를 제시하는 신뢰도 지수를 고찰하였다. 문헌조사 결과 도심지 하부 구조물의 피복두께의 평균은 70.0 ~ 90.0 mm였으며, 변동계수는 0.2 수준으로 조사되었다. 목표 내구수명 파괴확률을 10.0 %로 설정한 확률론적 내구수명 해석 방법의 경우 피복두께가 70 mm일 때 피복두께 변동계수 0.05, 0.1, 0.2에 해당하는 내구수명은 137년, 123년, 91년이 도출되었으며 피복두께가 80 mm인 경우 내구수명은 각각 179년, 161년, 120년으로 도출되었다. 결정론적 내구수명 평가와 동일한 수준의 신뢰도 지수를 평가하였는데 피복두께가 70 mm일 때 1.66 ~ 3.43 수준으로, 피복두께가 80 mm일 때 1.61 ~ 3.24 수준으로 평가되었다. 결정론적인 방법에서는 다양한 품질 및 국부적인 환경계수가 크게 고려되어 있는데, 이에 따라 내구수명이 크게 변화하므로 환경 및 설계인자의 변동성을 고려한 탄산화 설계변수의 정의가 필요하다.

Keywords

Acknowledgement

본 연구는 정부의 지원으로 한국연구재단 중견연구자지원 사업의 지원을 받아 수행되었으며 이에 감사드립니다(NRF-2020R1A2C2009462).

References

  1. Metha, P. K., and Monteiro, P. M. (2009), Concrete-Structure, properties, and materials, 2nd edition, prentice Hall, New-Jersey, 113-171.
  2. KDS 14 20 40 (2016), Standard for Durability Design of Concrete Structures, Korea Concrete Institute, Korea, 12-18.
  3. JSCE (2007), Standard Specification for Concrete Structures-Design, Japan Society of Civil Engineering (JSCE), Tokyo, Japan.
  4. EN-1991 (2000), Eurocode 1 : Basic of Design and Actions on Structures, European Committee for Standardization.
  5. KSCE (1999), Report for durability guarantee of underground structure, Korea Society of Civil Engineering, 82-122.
  6. CEB Task Group-5.1 (1997), New Approach to Durability Design, Sprint-Druck, Stuttgart.
  7. Izumi, I., Kita, D., and Maeda, H. (1986), Carbonation, Kibodang Publication, 35-88.
  8. Papadakis, V. G., Vayenas, C. G., and Fardis, M. N. (1991a), Physical and Chemical Characteristics Affecting the Durability of Concrete, Materials Journal, 88(2), 186-196.
  9. Papadakis, V. G., Vayenas, C. G., and Fardis, M. N. (1991b), Fundamental Modeling and Experimental Investigation of Concrete Carbonation, Materials Journal, 88(4), 363-373.
  10. Saeki, T., Ohga, H., and Nagataki, S. (1990), Change in Micro-Structure of Concrete Due to Carbonation, Concrete Library of JSCE, 1990(420), 33-42.
  11. Maekawa, K., Chaube, R., and Kishi, T. (1999), Modelling of Concrete Performance: Hydration, Microstructure Formation and Mass Transport, ROUTLEDGE, London and New York, 81-152.
  12. Maekawa, K., Ishida, T., and Kishi, T. (2003), Multi-scale Modeling of Concrete Performance Integrated Material and Structural Mechanics, Journal of Advanced Concrete Technology, 1(2), 91-126. https://doi.org/10.3151/jact.1.91
  13. Maekawa, K., Ishida, T., and Kishi, T. (2009), Multi-Scale Modeling of Structural Concrete, Taylor & Francis, London, UK, 86-105.
  14. Stewart, M. G., and Mullard, J. A. (2007), Spatial Time-Dependent Reliability Analysis of Corrosion Damage and the Timing of First Repair for RC Structures, Engineering Structures, 29(7), 1457-1464. https://doi.org/10.1016/j.engstruct.2006.09.004
  15. Kwon, S. J., and Na, U. J. (2011), Prediction of Durability for RC Columns with Crack and Joint Under Carbonation Based on Probabilistic Approach, International Journal of Concrete Structures and Materials, 5(1), 11-18. https://doi.org/10.4334/IJCSM.2011.5.1.011
  16. Na, U. J., Kwon, S. J., Chaudhuri, S. R., and Shinozuka, M. (2012), Stochastic Model for Service Life Prediction of RC Structures Exposed to Carbonation Using Random Field Simulation, KSCE Journal of Civil Engineering, 16(1), 133-143. https://doi.org/10.1007/s12205-012-1248-7
  17. Duprat, F., and Sellier, A. (2006), Probabilistic Approach to Corrosion Risk Due to Carbonation Via an Adaptive Response Surface Method, Probabilistic Engineering Mechanics, 21(3), 207-216. https://doi.org/10.1016/j.probengmech.2005.11.001
  18. Broomfield, J. P. (2006), Corrosion of Steel in Concrete: Understanding, Investigation and Repair, CRC Press, London, UK.
  19. RILEM (1994), Durability Design of Concrete Structures; Report of RILEM Technical Committee 130-CSL, E&FN, London, UK.
  20. Kim, G. Y., Choe, G. C., Nam, J. S., and Choi, H. G. (2015), Durability Design of Concrete Structure Based on Carbonation, Magazine of the Korea Concrete Institute, 27(5), 21-24. https://doi.org/10.22636/MKCI.2015.27.5.21
  21. Yoon, Y. S., Ryu, H. S., Lim, H. S., Koh, K. T., Kim, J. S., and Kwon, S. J. (2018), Effect of Grout Conditions and Tendon Location on Corrosion Pattern in PS Tendon in Grout, Construction and Building Materials, 186, 1005-1015. https://doi.org/10.1016/j.conbuildmat.2018.08.023
  22. Lee, S. K., and Zielske, J. (2014), An FHWA special study: post-tensioning tendon grout chloride thresholds (No. FHWA-HRT-14-039).
  23. KCI (2003), Guideline for Designing, Construction and Maintenance of Reinforced Concrete Structures for Chloride attack and Carbonation, Korea Concrete Institute, Seoul, Korea.
  24. DuraCrete, Final Technical Report (2000), Probabilistic Performance Based Durability Design of Concrete Structures; Document BE95-1347/R17, European Brite-Euram Programme, Gouda.
  25. Kim, T. H. (2021), Service Life Variation of RC Structures Exposed to Carbonation Considering Loading Conditions, Hannam University Master's Degree thesis.
  26. Kwon, S. J., and Song, H. W. (2010), Analysis of Carbonation Behavior in Concrete Using Neural Network Algorithm and Carbonation Modeling, Cement and Concrete Research, 40(1), 119-127. https://doi.org/10.1016/j.cemconres.2009.08.022
  27. Seoul City Hall (2020), Road facility safety inspection results, Available at: opengov.seoul.go.kr/public/category.