• Title/Summary/Keyword: conceptual space

Search Result 477, Processing Time 0.027 seconds

A Conceptual Design of HAUSAT-1(CubeSat) Satellite

  • Kim, Joon-Tae;Kim, Young-Suk;Seo, Seung-Won;Kim, Young-Hyun;Chang, Young-Keun
    • International Journal of Aeronautical and Space Sciences
    • /
    • v.3 no.1
    • /
    • pp.61-73
    • /
    • 2002
  • This paper addresses the conceptual design results of the HAUSAT-1 (Hankuk Aviation University SATellite-1), developed by Space System Research Lab. of Hankuk Aviation Univ., which is a new generation picosatellite. This project has been funded by Korean Government for the purpose of developing the space core technology. This is the first attempt at the level of university in Korea to develop the satellite weighing less than 1kg and accelerates opportunities with low construction, low launch cost space experiment platforms. The purpose of the HAUSAT-1 project is to offer graduate and undergraduate students great opportunities to be able to understand the design process of satellite development as a team member. Its mission objectives are to track its position by the GPS receiver system, to deploy the thin film solar cell panel to generate extra power, and to measure plasma density and temperature with the plasma sensor. The HAUSAT-1 will orbit at the altitude of 650 km with 65 degree inclination angle with 12 months of design mission life. It is planned to be launched on November 2003 by Russian launch vehicle "Dnepr".

Conceptual design of a dual drum-controlled space molten salt reactor (D2 -SMSR): Neutron physics and thermal hydraulics

  • Yongnian Song;Nailiang Zhuang;Hangbin Zhao;Chen Ji;Haoyue Deng;Xiaobin Tang
    • Nuclear Engineering and Technology
    • /
    • v.55 no.6
    • /
    • pp.2315-2324
    • /
    • 2023
  • Space nuclear reactors are becoming popular in deep space exploration owing to their advantages of high-power density and stability. Following the fourth-generation nuclear reactor technology, a conceptual design of the dual drum-controlled space molten salt reactor (D2-SMSR) is proposed. The reactor concept uses molten salt as fuel and heat pipes for cooling. A new reactivity control strategy that combines control drums and safety drums was adopted. Critical physical characteristics such as neutron energy spectrum, neutron flux distribution, power distribution and burnup depth were calculated. Flow and heat transfer characteristics such as natural convection, velocity and temperature distribution of the D2-SMSR under low gravity conditions were analyzed. The reactivity control effect of the dual-drums strategy was evaluated. Results showed that the D2-SMSR with a fast spectrum could operate for 10 years at the full power of 40 kWth. The D2-SMSR has a high heat transfer coefficient between molten salt and heat pipe, which means that the core has a good heat-exchange performance. The new reactivity control strategy can achieve shutdown with one safety drum or three control drums, ensuring high-security standards. The present study can provide a theoretical reference for the design of space nuclear reactors.

Interactive Navigation Design in 3-Dimensional Virtual Space Part I: Basic Concepts and Techniques (3차원 가상공간에서의 상호작용적 네비게이션 디자인 1부: 기초개념 및 기술)

  • 김진희
    • Archives of design research
    • /
    • v.16 no.3
    • /
    • pp.71-80
    • /
    • 2003
  • Virtual Reality fields see the popularization era. Desk-top VR industries are under rapid development, concentrating on various Web VR applications. Performing user navigation in 3D virtual space is a complicate process in which one is looking for a way with understanding logical structures established in a virtual space and noticing established interactions. It is not a process established by a user, but a technical, skillful and conceptual process carefully designed and constructed at the pre-production stage. Therefore, in this paper technical, skillful and conceptual basic theories, related with the interactive navigation in a 3D virtual space, are thoroughly discussed.

  • PDF

Propulsion System Modeling and Reduction for Conceptual Truss-Braced Wing Aircraft Design

  • Lee, Kyunghoon;Nam, Taewoo;Kang, Shinseong
    • International Journal of Aeronautical and Space Sciences
    • /
    • v.18 no.4
    • /
    • pp.651-661
    • /
    • 2017
  • A truss-braced wing (TBW) aircraft has recently received increasing attention due to higher aerodynamic efficiency compared to conventional cantilever wing aircraft. For conceptual TBW aircraft design, we developed a propulsion-and-airframe integrated design environment by replacing a semi-empirical turbofan engine model with a thermodynamic cycle-based one built upon the numerical propulsion system simulation (NPSS). The constructed NPSS model benefitted TBW aircraft design study, as it could handle engine installation effects influencing engine fuel efficiency. The NPSS model also contributed to broadening TBW aircraft design space, for it provided turbofan engine design variables involving a technology factor reflecting progress in propulsion technology. To effectively consolidate the NPSS propulsion model with the TBW airframe model, we devised a rapid, approximate substitute of the NPSS model by reduced-order modeling (ROM) to resolve difficulties in model integration. In addition, we formed an artificial neural network (ANN) that associates engine component attributes evaluated by object-oriented weight analysis of turbine engine (WATE++) with engine design variables to determine engine weight and size, both of which bring together the propulsion and airframe system models. Through propulsion-andairframe design space exploration, we optimized TBW aircraft design for fuel saving and revealed that a simple engine model neglecting engine installation effects may overestimate TBW aircraft performance.

The Conceptual Design of Mass Memory Unit for High Speed Data Processing in the STSAT-3 (고속 데이터 처리를 위한 과학기술위성 3호 대용량 메모리 유닛의 개념 설계)

  • Seo, In-Ho;Oh, Dae-Soo;Myung, Noh-Hoon
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.38 no.4
    • /
    • pp.389-394
    • /
    • 2010
  • This paper describes the conceptual design of mass memory unit for high speed data processing and mass memory management in the STSAT-3 compared to that of STSAT-2. The FPGA directly controls the data receiving from two payloads with the maximum 100Mbps speed and 32Gb mass memory management to satisfy these requirements. We used SRAM-based FPGA from XILINX having fast operating speed and large logic cells. Therefore, the Triple Modular Redundancy(TMR) and configuration memory scrubbing techniques will also be used to protect FPGA from Single Event Upset(SEU) in space.

A Preliminary Impulsive Trajectory Design for (99942) Apophis Rendezvous Mission

  • Kim, Pureum;Park, Sang-Young;Cho, Sungki;Jo, Jung Hyun
    • Journal of Astronomy and Space Sciences
    • /
    • v.38 no.2
    • /
    • pp.105-117
    • /
    • 2021
  • In this study, a preliminary trajectory design is conducted for a conceptual spacecraft mission to a near-Earth asteroid (NEA) (99942) Apophis, which is expected to pass by Earth merely 32,000 km from the Earth's surface in 2029. This close approach event will provide us with a unique opportunity to study changes induced in asteroids during close approaches to massive bodies, as well as the general properties of NEAs. The conceptual mission is set to arrive at and rendezvous with Apophis in 2028 for an advanced study of the asteroid, and some near-optimal (in terms of fuel consumption) trajectories under this mission architecture are to be investigated using a global optimization algorithm called monotonic basin hopping. It is shown that trajectories with a single swing-by from Venus or Earth, or even simpler ones without gravity assist, are the most feasible. In addition, launch opportunities in 2029 yield another possible strategy of leaving Earth around the 2029 close approach event and simply following the asteroid thereafter, which may be an alternative fuel-efficient option that can be adopted if advanced studies of Apophis are not required.

CONCEPTUAL STRUCTURAL DESIGN AND COMPARATIVE POWER SYSTEM ANALYSIS OF OZONE DYNAMICS INVESTIGATION NANO-SATELLITE (ODIN)

  • Park, Nuri;Hwang, Euidong;Kim, Yeonju;Park, Yeongju;Kang, Deokhun;Kim, Jonghoon;Hong, Ik-seon;Jo, Gyeongbok;Song, Hosub;Min, Kyoung Wook;Yi, Yu
    • Journal of The Korean Astronomical Society
    • /
    • v.54 no.1
    • /
    • pp.9-16
    • /
    • 2021
  • The Ozone Dynamics Investigation Nano-Satellite (ODIN) is a CubeSat design proposed by Chungnam National University as contribution to the CubeSat Competition 2019 sponsored by the Korean Aerospace Research Institute (KARI). The main objectives of ODIN are (1) to observe the polar ozone column density (latitude range of 60° to 80° in both hemispheres) and (2) to investigate the chemical dynamics between stratospheric ozone and ozone depleting substances (ODSs) through spectroscopy of the terrestrial atmosphere. For the operation of ODIN, a highly efficient power system designed for the specific orbit is required. We present the conceptual structural design of ODIN and an analysis of power generation in a sun synchronous orbit (SSO) using two different configurations of 3U solar panels (a deployed model and a non-deployed model). The deployed solar panel model generates 189.7 W through one day which consists of 14 orbit cycles, while the non-deployed solar panel model generates 152.6 W. Both models generate enough power for ODIN and the calculation suggests that the deployed solar panel model can generate slightly more power than the non-deployed solar panel model in a single orbit cycle. We eventually selected the non-deployed solar panel model for our design because of its robustness against vibration during the launch sequence and the capability of stable power generation through a whole day cycle.

Development of a Digital Mock-up for Conceptual Design of a Submarine (잠수함 개념 설계를 위한 디지털 목업 개발)

  • Kim, Tae-Hwan;Chun, Sang-Hoo;Sheen, Dong-Mok
    • Journal of Ocean Engineering and Technology
    • /
    • v.23 no.1
    • /
    • pp.152-157
    • /
    • 2009
  • In designing and manufacturing a submarine, an expensive real mock up is usually built as a reference because of the spatial constraints of a submarine. This paper presents an integrated and automated design process for a submarine that uses a digital mock up. Various equipment libraries are built for feature based design. Using the developed digital mock up, this paper shows various ways to verify the design, including a space analysis to check for any interference between pieces of equipment and the hull and an ergonomic analysis using lifelike dummies to examine the work space and operability. As a part of the integrated design system, a design automation system was also developed to generate surface point data for the outer hull, pressure hull, casing, and sail. The whole process was applied to the design of a submarine for verification.

Design Feature-Based Jetfighter Shape Modeling

  • Zang, Jing;Liu, Hu;Liu, Tianping;Ni, Xianping
    • International Journal of Aeronautical and Space Sciences
    • /
    • v.14 no.3
    • /
    • pp.222-228
    • /
    • 2013
  • A jetfighter shape modeling method based on design features is researched, to improve the efficiency of shape modeling in the stage of conceptual aircraft design. The aircraft's general design features and shape parameters, including geometric and position parameters, are described. The coordinate systems of the entire aircraft and its components are defined. As a sample of local shape, a method of inlet intake modeling is introduced. The whole process of the modeling method is proposed. Three examples of different jetfighters are listed, to describe the achievement of basic layout, which includes four main elements. The Fusion of Components can be achieved by regulating the details of the sections of the fuselage. Sample Cases of typical layouts are shown to verify the effectiveness of the proposed method, which provides the basis for further analysis and optimization.

A Study on the Space Planning and Formal Design of Nursing Lab (대학 간호학 실습실의 공간구성 및 형태계획에 관한 연구)

  • Lee, Joo-Hye
    • Proceedings of the Korean Institute of Interior Design Conference
    • /
    • 2007.05a
    • /
    • pp.67-70
    • /
    • 2007
  • The meaning of the space planning which has from modern interior space has played important role, space composition planning itself is the concept creation tool as well as the unique expression sphere in field of interior space far away from fixed idea relevant to the existing space which was only simple division or secondary element in design. Thus, this current work expresses that the space-Function is related with space-division as well as basic designed-conceptual work process including the space is formed. Furthermore, through the side-composition with form, it activates the various space aspect perceptually, which created the visual environment in using lightning, reflection of glass and penetrated nature etc. The keyword on elevation design concept is as like various aspects, third dimension, non-materiality and symbolical meaning. In addition, it provides the color space equipped with functionality and artistry capable to arouse the diverse sensual capacity to space users on default of image language.

  • PDF