DOI QR코드

DOI QR Code

Conceptual design of a dual drum-controlled space molten salt reactor (D2 -SMSR): Neutron physics and thermal hydraulics

  • Yongnian Song (Department of Nuclear Science and Technology, Nanjing University of Aeronautics and Astronautics) ;
  • Nailiang Zhuang (Department of Nuclear Science and Technology, Nanjing University of Aeronautics and Astronautics) ;
  • Hangbin Zhao (Key Laboratory of Nuclear Technology Application and Radiation Protection in Astronautics, Ministry of Industry and Information Technology) ;
  • Chen Ji (State Key Laboratory of Space Power-sources Technology, Shanghai Institute of Space Power-Sources) ;
  • Haoyue Deng (State Key Laboratory of Space Power-sources Technology, Shanghai Institute of Space Power-Sources) ;
  • Xiaobin Tang (Department of Nuclear Science and Technology, Nanjing University of Aeronautics and Astronautics)
  • Received : 2022.09.28
  • Accepted : 2023.03.06
  • Published : 2023.06.25

Abstract

Space nuclear reactors are becoming popular in deep space exploration owing to their advantages of high-power density and stability. Following the fourth-generation nuclear reactor technology, a conceptual design of the dual drum-controlled space molten salt reactor (D2-SMSR) is proposed. The reactor concept uses molten salt as fuel and heat pipes for cooling. A new reactivity control strategy that combines control drums and safety drums was adopted. Critical physical characteristics such as neutron energy spectrum, neutron flux distribution, power distribution and burnup depth were calculated. Flow and heat transfer characteristics such as natural convection, velocity and temperature distribution of the D2-SMSR under low gravity conditions were analyzed. The reactivity control effect of the dual-drums strategy was evaluated. Results showed that the D2-SMSR with a fast spectrum could operate for 10 years at the full power of 40 kWth. The D2-SMSR has a high heat transfer coefficient between molten salt and heat pipe, which means that the core has a good heat-exchange performance. The new reactivity control strategy can achieve shutdown with one safety drum or three control drums, ensuring high-security standards. The present study can provide a theoretical reference for the design of space nuclear reactors.

Keywords

Acknowledgement

This work was supported by the National Natural Science Foundation of China (Grant Nos. 12105142 and 12205152), the Jiangsu Planned Projects for Postdoctoral Research Funds (Grant No. 2021K387C) and the Natural Science Foundation of Jiangsu Province (Grant No. BK20220904).

References

  1. L. Watson-Morgan, G. Chavers, J. Connolly, K. Crowe, D. Krupp, L. Means, T. Percy, T. Polsgrove, J. Turpin, NASA's initial and sustained artemis human landing systems, IEEE Aerosp. Conf. 50100 (2021) 1-11, https://doi.org/10.1109/AERO50100.2021.9438179, 2021.
  2. R. Verduci, V. Romano, G. Brunetti, N. Yaghoobi Nia, A. Di Carlo, G. D'Angelo, C. Ciminelli, Solar energy in space applications: review and technology perspectives, Adv. Energy Mater. 12 (2022), 2200125, https://doi.org/10.1002/aenm.202200125.
  3. N. Lior, Power from space, Energy Convers. Manag. 42 (2001) 1769-1805, https://doi.org/10.1016/S0196-8904(01)00040-1.
  4. B. Heshmatpour, A. Lieberman, M. Khayat, A. Leanna, T. Dobry, Special application thermoelectric micro isotope power sources, AIP Conf. Proc. 969 (2008) 689-695, https://doi.org/10.1063/1.2845032.
  5. R.C. O'Brien, R.M. Ambrosi, N.P. Bannister, S.D. Howe, H.V. Atkinson, Safe radioisotope thermoelectric generators and heat sources for space applications, J. Nucl. Mater. 377 (2008) 506-521, https://doi.org/10.1016/j.jnucmat.2008.04.009.
  6. G. Bennett, Space nuclear power: opening the final frontier, in: 4th Int. Energy Convers. Eng. Conf. Exhib. IECEC, American Institute of Aeronautics and Astronautics, San Diego, California, 2006, https://doi.org/10.2514/6.2006-4191.
  7. Zhiwen Dai, Chenglong Wang, Dalin Zhang, Wenxi Tian, Suizheng Qiu, G.H. Su, Numerical simulation on thermal-hydraulic and thermoelectric characteristics of the TOPAZ-II reactor core, Int. J. Energy Res. 45 (2021) 12159-12172, https://doi.org/10.1002/er.6170.
  8. M. Kambe, H. Tsunoda, K. Mishima, T. Iwamura, Rapid-L operator-free fast reactor concept without any control rods, Nucl. Technol. 143 (2003) 11-21, https://doi.org/10.13182/NT03-A3394.
  9. L. Mason, D. Poston, L. Qualls, System Concepts for Affordable Fission Surface Power, 2008. https://ntrs.nasa.gov/citations/20080013229.
  10. J.C. King, M.S. El-Genk, Submersion-subcritical safe space (S4) reactor, Nucl. Eng. Des. 236 (2006) 1759-1777, https://doi.org/10.1016/j.nucengdes.2005.12.010.
  11. T. Meng, K. Cheng, C. Zeng, Y. He, S. Tan, Preliminary control strategies of megawatt-class gas-cooled space nuclear reactor with different control rod configurations, Prog. Nucl. Energy 113 (2019) 135-144, https://doi.org/10.1016/j.pnucene.2019.01.013.
  12. D.I. Poston, The heatpipe-operated Mars exploration reactor (HOMER), in: AIP Conf. Proc., AIP, Albuquerque, New Mexico, 2001, pp. 797-804, https://doi.org/10.1063/1.1358010.
  13. Y. Ma, M. Liu, B. Xie, W. Han, X. Chai, S. Huang, H. Yu, Neutronic and thermal-mechanical coupling schemes for heat pipe-cooled reactor designs, J. Nucl. Eng. Radiat. Sci. 8 (2022), 021303, https://doi.org/10.1115/1.4051612.
  14. D.I. Poston, M. Gibson, P. McClure, KILOPOWER REACTORS FOR POTENTIAL SPACE EXPLORATION MISSIONS, in: NETS-2019-Pap, 2019, p. 6. Richland, WA, http://anstd.ans.org/.
  15. P.N. Haubenreich, J.R. Engel, Experience with the molten-salt reactor experiment, Nucl. Appl. Technol. 8 (1970) 118-136, https://doi.org/10.13182/NT8-2-118.
  16. L. Mathieu, D. Heuer, R. Brissot, C. Garzenne, C. Le Brun, D. Lecarpentier, E. Liatard, J.-M. Loiseaux, O. Meplan, E. Merle-Lucotte, A. Nuttin, E. Walle, J. Wilson, The thorium molten salt reactor: moving on from the MSBR, Prog. Nucl. Energy 48 (2006) 664-679, https://doi.org/10.1016/j.pnucene.2006.07.005.
  17. D. Zhang, L. Liu, M. Liu, R. Xu, C. Gong, J. Zhang, C. Wang, S. Qiu, G. Su, Review of conceptual design and fundamental research of molten salt reactors in China, Int. J. Energy Res. 42 (2018) 1834-1848, https://doi.org/10.1002/er.3979.
  18. S. Greene, J. Gehin, D. Holcomb, J. Carbajo, D. Ilas, A. Cisneros, V. Varma, W. Corwin, D. Wilson, G. Yoder, A. Qualls, F. Peretz, G. Flanagan, D. Clayton, E. Bradley, G. Bell, J. Hunn, P. Pappano, S. Cetiner, Pre-Conceptual Design of a Fluoride-Salt-Cooled Small Modular Advanced High Temperature Reactor, SmAHTR), 2011, https://doi.org/10.2172/1008830.
  19. A. Rykhlevskii, B.R. Betzler, A. Worrall, K.D. Huff, Fuel Cycle Performance of Fast Spectrum Molten Salt Reactor Designs, Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States), 2019, https://doi.org/10.31224/osf.io/zkvn9.
  20. Rei Kimura, Tadashi Yoshida, Design study of molten-salt-type reactor for powering space probes and its automated start-up, J. Nucl. Sci. Technol. 50 (2013) 998-1010, https://doi.org/10.1080/00223131.2013.829284.
  21. M. Eades, J. Flanders, N. McMurray, R. Denning, X. Sun, W. Windl, T. Blue, Space molten salt reactor concept for nuclear electric propulsion and surface power, J. Br. Interplanet. Soc. 64 (2011) 186-193.
  22. L. Ting, Z. Kun, S. Wen, T. Xiaobin, Preliminary neutronics design of space nuclear reactor based on molten salt cooling, Nucl. Tech. 43 (2020) 34-42 (in Chinese).
  23. D.Y. Cui, Y. Dai, X.Z. Cai, Y. Fu, X.X. Li, Y. Zou, J.G. Chen, Preconceptual nuclear design of a 50 kWth heat pipe cooled micro molten salt reactor (micro-MSR), Prog. Nucl. Energy 134 (2021), 103670, https://doi.org/10.1016/j.pnucene.2021.103670.
  24. Y. Shihe, S. Qiang, Z. Heng, Y. Rui, Z. Yang, L. Bing, Conceptual design of Mars molten salt reactor, Nucl. Tech. 43 (2020) 67-72 (in Chinese).
  25. J. Serp, M. Allibert, O. Benes, S. Delpech, O. Feynberg, V. Ghetta, D. Heuer, D. Holcomb, V. Ignatiev, J.L. Kloosterman, L. Luzzi, E. Merle-Lucotte, J. Uhlir, R. Yoshioka, D. Zhimin, The molten salt reactor (MSR) in generation IV: overview and perspectives, Prog. Nucl. Energy 77 (2014) 308e319, https://doi.org/10.1016/j.pnucene.2014.02.014.
  26. D. LeBlanc, Molten salt reactors: a new beginning for an old idea, Nucl. Eng. Des. 240 (2010) 1644-1656, https://doi.org/10.1016/j.nucengdes.2009.12.033.
  27. L. Mathieu, D. Heuer, E. Merle-Lucotte, R. Brissot, C. Le Brun, E. Liatard, J.-M. Loiseaux, O. Meplan, A. Nuttin, D. Lecarpentier, Possible configurations for the thorium molten salt reactor and advantages of the fast nonmoderated version, Nucl. Sci. Eng. 161 (2009) 78-89, https://doi.org/10.13182/NSE07-49.
  28. B.M. Elsheikh, Safety assessment of molten salt reactors in comparison with light water reactors, J. Radiat. Res. Appl. Sci. 6 (2013) 63-70, https://doi.org/10.1016/j.jrras.2013.10.008.
  29. T.M. Schriener, M.S. El-Genk, Reactivity control options of space nuclear reactors, Prog. Nucl. Energy 51 (2009) 526-542, https://doi.org/10.1016/j.pnucene.2008.11.003.
  30. A.E. Craft, J.C. King, Reactivity control schemes for fast spectrum space nuclear reactors, Nucl. Eng. Des. 241 (2011) 1516-1528, https://doi.org/10.1016/j.nucengdes.2011.01.049.
  31. H.C. Lee, T.Y. Han, H.S. Lim, J.M. Noh, An accident-tolerant control drum system for a small space reactor, Ann. Nucl. Energy 79 (2015) 143-151, https://doi.org/10.1016/j.anucene.2015.02.001.
  32. M.A. Gibson, D.I. Poston, P.R. McClure, J.L. Sanzi, T.J. Godfroy, M.H. Briggs, S.D. Wilson, N.A. Schifer, M.F. Chaiken, N. Lugasy, Heat transport and power conversion of the kilopower reactor test, Nucl. Technol. 206 (2020) 31-42, https://doi.org/10.1080/00295450.2019.1709364.
  33. L. Dewan, Molecular Dynamics Simulation and Topological Analysis of the Network Structure of Actinide-Bearing Materials, Thesis, Massachusetts Institute of Technology, 2013. https://dspace.mit.edu/handle/1721.1/86266.
  34. K. Wang, Z. Li, D. She, J. Liang, Q. Xu, Y. Qiu, J. Yu, J. Sun, X. Fan, G. Yu, RMC - a Monte Carlo code for reactor core analysis, Ann. Nucl. Energy 82 (2015) 121-129, https://doi.org/10.1016/j.anucene.2014.08.048.
  35. F.G. Schmitt, About Boussinesq's turbulent viscosity hypothesis: historical remarks and a direct evaluation of its validity, Comptes Rendus Mecanique 335 (2007) 617-627, https://doi.org/10.1016/j.crme.2007.08.004.
  36. L. Zhang, J. Deng, W. Sun, Z. Ma, G.H. Su, L. Pan, Performance analysis of natural convection in presence of internal heating, strong turbulence and phase change, Appl. Therm. Eng. 178 (2020), 115602, https://doi.org/10.1016/j.applthermaleng.2020.115602.
  37. D.I. Poston, M.A. Gibson, T.J. Godfroy, P.R. McClure, KRUSTY reactor design, Nucl. Technol. 206 (2020) 13-30, https://doi.org/10.1080/00295450.2020.1725382.
  38. H. Chen, Z. Chen, C. Chen, X. Zhang, H. Zhang, P. Zhao, K. Shi, S. Li, J. Feng, Q. Zeng, Conceptual design of a small modular natural circulation lead cooled fast reactor SNCLFR-100, Int. J. Hydrogen Energy 41 (2016) 7158-7168, https://doi.org/10.1016/j.ijhydene.2016.01.101.
  39. J.C. King, M.S. El-Genk, Temperature and burnup reactivities and operational lifetime for the submersion-subcritical, safe space (S∧4) reactor, Nucl. Eng. Des. 237 (2007) 552-564, https://doi.org/10.1016/j.nucengdes.2006.07.008.