• Title/Summary/Keyword: concentration of power

Search Result 2,517, Processing Time 0.028 seconds

Optimization of Corni fructus Extracts by Response Surface Methodology (반응표면분석에 의한 산수유 추출물의 추출조건 최적화)

  • Lee, Hye-Jin;Do, Jeong-Ryong;Kwon, Joong-Ho;Kim, Hyun-Ku
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.41 no.3
    • /
    • pp.390-395
    • /
    • 2012
  • Response surface methodology was used to monitor the characteristics of Corni fructus. A maximum electron donating ability of 81.27% was obtained at 119.71 W of microwave power, 7.71% of ethanol concentration, and 4.21 min of extraction time. The maximum inhibitory effect on tyrosinase was 105.92% at 143.36 W of microwave power, 58.19% ethanol concentration, and 6.71 min of extraction time. The maximum superoxide dismutase like activity was 87.08% under the extraction conditions of 107.33 W of microwave power, 96.14% ethanol concentration, and 31.49 min of extraction time. The total polyphenol content showed a maximum of 475.86 mg% at 140.29 W of microwave power, 27.44% ethanol concentration, and 58.69 min of extraction time. Based on the superimposition of four-dimensional RSM data regarding the electron-donating ability, inhibitory effect on tyrosinase, superoxide dismutase like activity, and total polyphenol content, the optimum ranges of extraction conditions were found to be at 78~98 W of microwave power, 3~33% ethanol concentration, and 3.6~9 min of extraction time.

Development of Light Transmission Fluctuation for Particle Measurement in Solid-Gas Two Phase Flows

  • YANG, Bin;WANG, Zhan-ping;HE, Yuan;CAI, Xiao-Shu
    • Particle and aerosol research
    • /
    • v.12 no.1
    • /
    • pp.21-26
    • /
    • 2016
  • In order to realize In-line and convenient measurement for solid-gas two phase flows, Light Transmission Fluctuation (LTF) based on the random variation of transmitted light intensity, light scattering theory and cross-correlation method was presented for online measurement of particle size, concentration and velocity. The statistical relationship among transmitted light intensity, particle size and particle number in measurement zone was described by Beer-Lambert Law. Accordingly, the particle size and concentration were determined from the fluctuation signal of transmitted light intensity. Simultaneously, the particle velocity was calculated by cross-correlation analysis of two neighboring light beams. By considering the influence of concentration variation in industrial applications, the improved algorithm based on spectral analysis of transmitted light intensity was proposed to improve measurement accuracy and stability. Therefore, the online measurement system based on LTF was developed and applied to measure pulverized coal in power station and raw material in cement plant. The particle size, concentration and velocity of powder were monitored in real-time. It can provide important references for optimal control, energy saving and emission reduction of energy-intensive industries.

Effect of Stress Concentration Factors on the Fatigue Evaluation of the Direct Vessel Injection Nozzle (원자로 직접주입노즐의 피로평가에 미치는 응력집중계수의 영향)

  • Kim, Tae-Soon;Lee, Jae-Gon
    • Journal of the Korean Society of Safety
    • /
    • v.25 no.6
    • /
    • pp.53-59
    • /
    • 2010
  • A fatigue damage caused by cyclic load is considered as one of the important failure mechanisms that threaten the integrity of structures and components in a nuclear power plant. In ASME code section III NB, the fatigue analysis procedure and standard S-N curves for the class 1 components are described and these criteria should be met at the design step of components. As the current ASME S-N curves are based on the very conservative assumptions such as a local stress concentration effect, immoderate transient frequencies and a constant Young's modulus, however, they can not precisely address the fatigue behavior of components. In order to find out the technical solution for these problems, a number of researches and discussion have been carried out continuously at home and abroad over the decades. In this study, detailed fatigue analyses for DVI nozzle with various mesh density of finite elements were performed to evaluate effect of stress concentration factors on the fatigue analysis procedure and the excessive conservatism of stress concentration factors are confirmed through the analysis results.

PREDICTION OF HYDROGEN CONCENTRATION IN CONTAINMENT DURING SEVERE ACCIDENTS USING FUZZY NEURAL NETWORK

  • KIM, DONG YEONG;KIM, JU HYUN;YOO, KWAE HWAN;NA, MAN GYUN
    • Nuclear Engineering and Technology
    • /
    • v.47 no.2
    • /
    • pp.139-147
    • /
    • 2015
  • Recently, severe accidents in nuclear power plants (NPPs) have become a global concern. The aim of this paper is to predict the hydrogen buildup within containment resulting from severe accidents. The prediction was based on NPPs of an optimized power reactor 1,000. The increase in the hydrogen concentration in severe accidents is one of the major factors that threaten the integrity of the containment. A method using a fuzzy neural network (FNN) was applied to predict the hydrogen concentration in the containment. The FNN model was developed and verified based on simulation data acquired by simulating MAAP4 code for optimized power reactor 1,000. The FNN model is expected to assist operators to prevent a hydrogen explosion in severe accident situations and manage the accident properly because they are able to predict the changes in the trend of hydrogen concentration at the beginning of real accidents by using the developed FNN model.

PREDICTION OF THE TRITIUM CONCENTRATION IN THE SOIL WATER AFTER THE OPERATION OF WOLSONG TRITIUM REMOVAL FACILITY

  • CHOI HEUI-JOO;LEE HANSOO;SUH KYUNG SUK;KANG HEE SUK
    • Nuclear Engineering and Technology
    • /
    • v.37 no.4
    • /
    • pp.385-390
    • /
    • 2005
  • The effect of the Wolsong Tritium Removal Facility on the change of tritium concentration in the soil water was assessed by introducing a dynamic compartment model. For the mathematical modeling, the tritium in the environment was thought to come from two different sources. Three global tritium cycling models were compared with the natural background concentration. The dynamic compartment model was used to model the behavior of the tritium from the nuclear power plants at the Wolsong site. The source term for the dynamic compartment model was calculated with the dry and wet deposition rates. The area around the Wolsong nuclear power plants was represented by the compartments. The mechanisms considered in deriving the transfer coefficients between the compartments were evaporation, runoff, infiltration, hydrodynamic dispersion, and groundwater flow. We predicted what the change of the tritium concentration around the Wolsong nuclear power plants would be after future operation of the tritium removal facility to show the applicability of the model. The results showed that the operation of the tritium removal facility would reduce the tritium concentration in topsoil water quickly.

Effect of RuCl3 Concentration on the Lifespan of Insoluble Anode for Cathodic Protection on PCCP

  • Cho, H.W.;Chang, H.Y.;Lim, B.T.;Park, H.B.;Kim, Y.S.
    • Corrosion Science and Technology
    • /
    • v.14 no.4
    • /
    • pp.177-183
    • /
    • 2015
  • Prestressed Concrete steel Cylinder Pipe (PCCP) is extensively used as seawater pipes for cooling in nuclear power plants. The internal surface of PCCP is exposed to seawater, while the external surface is in direct contact with underground soil. Therefore, materials and strategies that would reduce the corrosion of its cylindrical steel body and external steel wiring need to be employed. To prevent against the failure of PCCP, operators provided a cathodic protection to the pre-stressing wires. The efficiency of cathodic protection is governed by the anodic performance of the system. A mixed metal oxide (MMO) electrode was developed to meet criteria of low over potential and high corrosion resistance. Increasing coating cycles improved the performance of the anode, but cycling should be minimized due to high materials cost. In this work, the effects of $RuCl_3$ concentration on the electrochemical properties and lifespan of MMO anode were evaluated. With increasing concentration of $RuCl_3$, the oxygen evolution potential lowered and polarization resistance were also reduced but demonstrated an increase in passive current density and oxygen evolution current density. To improve the electrochemical properties of the MMO anode, $RuCl_3$ concentration was increased. As a result, the number of required coating cycles were reduced substantially and the MMO anode achieved an excellent lifespan of over 80 years. Thus, we concluded that the relationship between $RuCl_3$ concentration and coating cycles can be summarized as follows: No. of coating cycle = 0.48*[$RuCl_3$ concentration, $M]^{-0.97}$.

Modeling of the Environmental Behavior of Tritium Around the Nuclear Power Plants

  • Park, Heui-Joo;Lee, Hansoo;Kang, Hee-Suk;Park, Yong-Ho;Lee, Chang-Woo
    • Nuclear Engineering and Technology
    • /
    • v.34 no.3
    • /
    • pp.242-249
    • /
    • 2002
  • The relationship between the tritium release rate from the nuclear power plant and tritium concentration in the environment around the Kori site was modeled. The tritium concentration in the atmosphere was calculated by multiplying the release rates and $\chi$/Q values, and the d3V deposition rate at each sector according to the direction and the distance was obtained using a dry deposition velocity. The area around Kori site was divided into 6 zones according to the deposition rate. The six zones were divided into 14 compartments for the numerical simulation. Transfer coefficients between the compartments were derived using site characterization data. Source terms were calculated from the dry deposition rates. Tritium concentration in surface soil water and groundwater was calculated based upon a compartment model. The semi-analytical solution of the compartment model was obtained with a computer program, AMBER. The results showed that most of tritium deposited onto the land released into the atmosphere and the sea. Also, the estimated concentration in the top soil agreed well to that measured. Using the model, tritium concentration was predicted in the case that the tritium release rates were doubled.

Fabrication of Ceramic Particles Deposited Nano-web using Electrospinning Process and Its Far-infrared Ray Emission Property (원적외선 방출 특성을 갖는 나노 웹의 제조 및 원적외선 방사 특성에 관한 연구)

  • Hong, So-Ya;Lee, Chang-Hwan;Kim, Joo-Yong
    • Textile Coloration and Finishing
    • /
    • v.22 no.2
    • /
    • pp.118-122
    • /
    • 2010
  • The interest in textile which has far-infrared ray emissive property has been increased in the field of biophysics and medicine. In this study, far-infrared ray emissive polyurethane nano-web was obtained using electrospinning of polyurethane(PU) solution mixed with ceramics powder and far-infrared ray emissive properties of nano-web were evaluated by measuring far-infrared ray emission power and emissivity(%). To investigate the influence of concentration of ceramics powder in PU solution and temperature for far-infrared ray emissive properties, far-infrared ray emissivity was measured at varied temperature using various nano-web including varied concentration of ceramics powder. Polyurethane nano-web was characterized by SEM to observe the deposition of ceramics powder on polyurethane nano-web surface. The far-infrared ray emissivity was increased with the concentration of ceramics powder in the nano-web. The far-infrared ray emission power was enhanced with increasing temperature of the samples; however, far-infrared ray emissivity was decreased with increasing temperature because the increase of emission power of ceramic containing nano-web was lower than the emission power of black body one.

Corona generated Radio Interference of the 750 kV AC Bundle Conductors in Sandy and Dusty Weather Condition in the High Altitude Area

  • Liu, Yun-Peng;Zhu, Lei;Lv, Fang-Cheng;Wan, Bao-Quan;Pei, Chun-Ming
    • Journal of Electrical Engineering and Technology
    • /
    • v.9 no.5
    • /
    • pp.1704-1711
    • /
    • 2014
  • Sandy and dusty weather condition often occurs in the high altitude areas of China, which may greatly influence the corona generated radio interference (RI) characteristics of the bundle conductors of 750 kV AC power transmission lines. Corona generated RI of the conductors of the 750 kV AC power transmission lines used in practice is measured by EMI receiver with a coupling circuit and a coupling capacitor connected between the high voltage side and the earth side in fine and sandy and dusty condition. The measuring frequency is 0.5 MHz, and the quasi-peak detection is used. RI excitation function is calculated based on the corona RI current measured by the EMI receiver. Corona generated RI characteristics were analyzed from sand concentration and sand particle size. The test result shows that the corona generated RI excitation function is influenced by the sandy and dusty condition. Corona discharge of the conductors is more serious in sandy and dusty condition with an ultraviolet (UV) detector. Corona generated RI excitation function increases with the increase of sand concentration and also increases with the increase of particle size.

A Study on Characteristic Improvement of IGBT with P-floating Layer

  • Kyoung, Sinsu;Jung, Eun Sik;Kang, Ey Goo
    • Journal of Electrical Engineering and Technology
    • /
    • v.9 no.2
    • /
    • pp.686-694
    • /
    • 2014
  • A power semiconductor device, usually used as a switch or rectifier, is very significant in the modern power industry. The power semiconductor, in terms of its physical properties, requires a high breakdown voltage to turn off, a low on-state resistance to reduce static loss, and a fast switching speed to reduce dynamic loss. Among those parameters, the breakdown voltage and on-state resistance rely on the doping concentration of the drift region in the power semiconductor, this effect can be more important for a higher voltage device. Although the low doping concentration in the drift region increases the breakdown voltage, the on-state resistance that is increased along with it makes the static loss characteristic deteriorate. On the other hand, although the high doping concentration in the drift region reduces on-state resistance, the breakdown voltage is decreased, which limits the scope of its applications. This addresses the fact that breakdown voltage and on-state resistance are in a trade-off relationship with a parameter of the doping concentration in the drift region. Such a trade-off relationship is a hindrance to the development of power semiconductor devices that have idealistic characteristics. In this study, a novel structure is proposed for the Insulated Gate Bipolar Transistor (IGBT) device that uses conductivity modulation, which makes it possible to increase the breakdown voltage without changing the on-state resistance through use of a P-floating layer. More specifically in the proposed IGBT structure, a P-floating layer was inserted into the drift region, which results in an alleviation of the trade-off relationship between the on-state resistance and the breakdown voltage. The increase of breakdown voltage in the proposed IGBT structure has been analyzed both theoretically and through simulations, and it is verified through measurement of actual samples.