• Title/Summary/Keyword: concentration condition

Search Result 5,004, Processing Time 0.043 seconds

A Study on Stress Analysis of Orthotropic Composite Cylindrical Shells with a Circular or an Elliptical Cutout

  • Ryu, Chung-Hyun;Lee, Young-Shin;Park, Myoung-Hwan;Kim, Young-Wann
    • Journal of Mechanical Science and Technology
    • /
    • v.18 no.5
    • /
    • pp.808-813
    • /
    • 2004
  • The stress analysis on orthotropic composite cylindrical shells with one circular or one elliptical cutout subjected to an axial force is carried out by using an analytical and experimental method. The composite cylindrical shell governing equation of the Donnell's type is applied to this study and all results are presented by the stress concentration factor. The stress concentration factor is defined as the ratio of the stress on the region around a cutout to the nominal stress of the shell. The stress concentration factor is classified into the circumferential stress concentration factors and the radial stress concentration factors due to the cylindrical coordinate of which the origin is the center of a cutout. The considered loading condition is only axial tension loading condition. In this study, thus, the maximum stress is induced on perpendicular region against axial direction, on the coordinate. Various cutout sizes are expressed using the radius ratio, (equation omitted), which is the radius of a cutout over one of the cylindrical shell. Experimental results are obtained using strain gages, which are attached around a cutout of the cylindrical shell. As the result from this study, the stress concentration around a cutout can be predicted by using the analytical method for an orthotropic composite cylindrical shell having a circular or an elliptical cutout.

Relationships between Milk Urea Nitrogen Concentration and Milk Components for Herd Management and Control in Gyeong-nam Dairy Cows (유우의 산유능력 검정성적과 MUN 농도와의 비교분석)

  • You, Yong-Sang;Kang, Dong-Joon;Kim, Cheol-Ho;Kim, Tae-Yung;Kang, Chung-Boo
    • Journal of Veterinary Clinics
    • /
    • v.24 no.2
    • /
    • pp.119-124
    • /
    • 2007
  • Milk components analysis was carried out milk yield(MY), milk fat(MF), milk protein(MP), milk urea nitrogen(MUN), milk solid(MS), day of non-pregnant condition(DNPC), and days of primipara(DPRI) involved. Dairy farms were divided high, middle and low groups according to the standard records for milk components. Examination records were divided by farm, parity, year, season and month, the number of samples were 28,957. MUN concentration was below 12 mg and when the MPP was below 3.0%, the days of non-pregnant condition were $94{\pm}10.77$ days but concentration of MUN was under 12 mg and when MPP was above 3.2%, longer period of non-pregnant condtion of $181.3{\pm}9.25$ was noted. The days of gestation of the first calving cow was $495.9{\pm}9.04$ days when the concentration of MUN was below 12mg/dl and MPP was under 3.0%. If the concentration of MUN was 12 mg/dl and when the MPP was over 3.2%, the days of gestation were $511.0{\pm}8.36$ days. It was believed that the concentrations of MPP and MUN have significant effects on the days of non-pregnant condition and the days of gestation. Determination of MY, MF, MS, and MUN was Milkoscan $4,000{\sim}5,000$ Serier(FOSS Electric Co., Copenhagen, Denmark). MUN standard concentration was 12-18(mg/dl) similar to blood urea nitrogen(BUN). Mutual relationship of milk components(MF, SCC, MY, DNPC, MS) and MUN concentration was low in regression analysis.

Mg2+-dependency of the Helical Conformation of the P1 Duplex of the Tetrahymena Group I Ribozyme

  • Lee, Joon-Hwa
    • Bulletin of the Korean Chemical Society
    • /
    • v.29 no.10
    • /
    • pp.1937-1940
    • /
    • 2008
  • The P1 duplex of Tetrahymena group I ribozyme is the important system for studying the conformational changes in folding of ribozyme. The formation of the P1 duplex between IGS and substrate RNA and the catalytic activity of ribozyme require a variety of metal ions such as $Mg^{2+}$ and $Mn^{2+}$. In order to investigate the effect of the $Mg^{2+}$ concentration on the conformation of the P1 duplex, the NMR study was performed as a function of $Mg^{2+}$ concentration. This study revealed that the less stable AU-rich region formed duplex at $50{^{\circ}C}$ under high $Mg^{2+}$ concentration condition but melts out under low $Mg^{2+}$ concentration condition. It was also found that in the active conformation under 10 mM $MgCl_2$ condition, the unstable central G${\cdot}$U wobble pair maintains the significant base pairing up to $50{^{\circ}C}$. This study provides the information of the unique feature of the P1 duplex structure and the roll of $Mg^{2+}$ ion on the formation of the active conformation.

Synoptic Meteorological Classification of the Days on Which Asthma Deaths Occurred Due to High PM10 Concentrations in Seoul (서울지역 미세먼지 고농도에 따른 천식사망자 사례일의 종관기상학적 분류)

  • Choi, Yun-Jeong;Park, Jong-Kil;Jung, Woo-Sik
    • Journal of Environmental Science International
    • /
    • v.26 no.2
    • /
    • pp.159-172
    • /
    • 2017
  • Asthma deaths in Seoul peaked on the third, fifth, and second days after the PM concentration exceeded the daily average concentration standard. We classified the synoptic meteorological conditions, based on the days involving such cases, into three categories. Type 1 included the meteorological condition likely to cause high air pollution concentrations in the leeward region, the dominant wind direction of which is the northwest. Type 2 included the meteorological condition likely to cause high air pollution concentrations due to the weak wind velocity under stable atmospheric conditions. Type 3 was when the passage low atmospheric pressure and the expansion of high atmospheric pressure occurred at the rear, indicating a meteorological condition likely to cause high air pollution, in certain regions. Type 1 occurred 11 times, with high concentrations of over $100{\mu}g/m^3$ being observed in the southeastern part of Seoul. Type 2 occurred 24 times, often accompanied by a PM concentration of $100{\sim}400{\mu}g/m^3$. Type 3 occurred 11 times, and was accompanied by several days of yellow dust that accounted for the highest concentrations.

Phytotoxic Effect of 5-Aminolevulinic Acid, a Biodegradable Photodynamic Biomaterial, on Rice and Barnyardgrass

  • Chon, Sang-Uk
    • Korean Journal of Environmental Agriculture
    • /
    • v.25 no.3
    • /
    • pp.268-275
    • /
    • 2006
  • ALA (5-aminolevulinic acid) has been proposed as a tetrapyrrole-dependent photodynamic herbicide by the action of the protoporphyrinogen IX oxidase (Protox IX). A study was conducted to determine photodynamic herbicidal effect of ALA on seedling growth of rice (Oryza sativa L.) and barnyard grass (Echinochloa crus-galli Beauv. var. oryzicola Ohwi) under dry and wet conditions. ALA effect on early plant growth of rice and barnyardgrass was greatly concentration dependant, suggesting that it promotes plant growth at very low concentration and inhibits at high concentration. No significant difference in herbicidal activity of biologically and synthetically produced ALAs on plant lengths of test plants was observed ALA exhibited significant photodynamic activity regardless of PSDIP and its duration. Significant shoot growth inhibition by ALA soaking treatment exhibited apparently, indicating that ALA absorbed through root system was translocated into shoot part of plants. ALA reduced plant heights of rice and barnyardgrass seedlings by 6% and 27%, respectively, showing more tolerant to ALA in rice under wet condition. Leaf thickness was reduced markedly by ALA with increasing of ALA concentration, due to mainly membrane destruction and severe loss of turgidity in mesophyll cells, although the epidermal was little affected. It was observed that photodynamic herbicidal activity of ALA applied by pre-and post-emergence application exhibited differently on plant species, and that the activity of ALA against susceptible plants was highly correlated with growing condition.

The Study on the Effects of Air Pollution on the Material Damages in Northeast Asia

  • Kim, Sun-Tae;Yasuaki Maeda
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.19 no.E2
    • /
    • pp.51-61
    • /
    • 2003
  • The material exposure tests have been carried out since 1993 to evaluate the relationship between air pollution and material corrosion with the cooperation of the researchers in Japan, China, and Korea. The test pieces such as bronze, copper, marble, and carbon steel have been exposed under both unsheltered and rain-sheltered outdoor condition separately at 18 sampling sites in East Asia. At the same time, the concentration of SO$_2$ and NO$_2$ has been measured simultaneously with passive sampler. The meteorological data were collected from the AWS (Auto-mated weather station) In each country and chemical compositions of wet deposition were also analyzed by the bulk sampling of rainfall every month. As the results, it was found that the corrosion rates of test pieces in the ambient air were appeared to be in the order of carbon steel > marble > bronze copper. The corrosion rates of test pieces in the unsheltered outdoor condition were 2.34 to 5.88 times larger than those in rain-sheltered condition. It was also found that the corrosion rate in the heavy polluted area in China was the highest, and the corrosion rates of the metal pieces were generally proportional to SO$_2$ concentration. Between two sites in Korea, the test pieces at Daegu site showed higher corrosion rates that would be due to the higher SO$_2$ concentration.

Effect of Ammonium Concentration on the Emission of $N_2O$ Under Oxygen-Limited Autotrophic Wastewater Nitrification

  • Kim, Dong-Jin;Kim, Yu-Ri
    • Journal of Microbiology and Biotechnology
    • /
    • v.21 no.9
    • /
    • pp.988-994
    • /
    • 2011
  • A significant amount of nitrous oxide ($N_2O$), which is one of the serious greenhouse gases, is emitted from nitrification and denitrification of wastewater. Batch wastewater nitrifications with enriched nitrifiers were carried out under oxygen-limited condition with synthetic (without organic carbon) and real wastewater (with organic carbon) in order to find out the effect of ammonium concentration on $N_2O$ emission. Cumulated $N_2O$-N emission reached 3.0, 5.7, 6.2, and 13.5 mg from 0.4 l of the synthetic wastewater with 50, 100, 200, and 500 mg/l ${NH_4}^+$-N, respectively, and 1.0 mg from the real wastewater with 125 mg/l ${NH_4}^+$-N. The results indicate that $N_2O$ emission increased with ammonium concentration and the load. The ammonium removal rate and nitrite concentration also increased $N_2O$ emission. Comparative analysis of $N_2O$ emission from synthetic and real wastewaters revealed that wastewater nitrification under oxygen-limited condition emitted more $N_2O$ than that of heterotrophic denitrification. Summarizing the results, it can be concluded that denitrification by autotrophic nitrifiers contributes significantly to the $N_2O$ emission from wastewater nitrification.

Application of UV Photocatalytic Degradation of Benzene

  • Gan, Yi;Liu, Ruiqi;Yu, Zhimin
    • Journal of Urban Science
    • /
    • v.8 no.2
    • /
    • pp.29-34
    • /
    • 2019
  • Benzene pollution is becoming increasingly serious, and the treatment technology of benzene has attracted much attention. In this paper, a self-made photocatalytic reactor was used to explore the removal rate of benzene under the ultraviolet light with the wavelength of 253.7nm. The results showed that the degradation rate of benzene decreased from 64.29% to 16.26% when the concentration increased from 43mg/㎥ to 256mg/㎥ under the condition of 28W UV light intensity and 50s residence time. Under the condition of 28W UV light intensity and 103mg/㎥ concentration, the residence time increased from 16.5s to 50s, and the benzene removal rate increased from 13.23% to 42.72%.Under the condition of benzene concentration 103mg/㎥ and residence time of 50s, the removal rate of benzene increased from 29.34% to 52.58% in the process of UV light intensity rising from 28W to 48W.It is concluded that decreasing the concentration and increasing the residence time of gas were beneficial to the removal of benzene and increasing the light intensity can improve the removal rate of benzene.

A Prediction of the Indoor Contaminant diffusion using Network Simulation (시뮬레이션을 통한 실내 오염물질 확산의 예측 방법)

  • Kang, Ki-Nam;Song, Doo-Sam
    • Proceedings of the SAREK Conference
    • /
    • 2006.06a
    • /
    • pp.311-318
    • /
    • 2006
  • CFD simulation is a tool very useful to predict the generation and absorption of the contaminant from the construction materials for the single room condition. However, there is a limit in multi-room simulation for analyzing air movement and contaminant concentration at the condition that the door of each room was closed. A lot of network simulation tool were developed which can used to analyze the mass transfer and contaminant concentration as results in the multi-room condition. However, existing network simulation method was not able to analyze the change of the heating and cooling load with the ventilation as though the change of the indoor air-pollution density was predictable. In this study, new approach to predict heating/cooling load and indoor contaminant concentration will be reviewed. New indoor contaminant concentration module reviewed in this study wad coupled with existing ESP-r network simulation method. The validity of new approach will be analysed for comparison the results of simulation and field measurement results.

  • PDF

열수화법으로 성장시 성장 온도에 따른 ZnO 나노 구조의 표면 형상 변화

  • Bae, Yeong-Suk;Kim, Dong-Chan;Jo, Hyeong-Gyun
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2009.11a
    • /
    • pp.238-238
    • /
    • 2009
  • In this work, we investigated the effect of the Zn complex concentration and growth temperature on the growth of ZnO nanorod by hydrothermal method. The ZnO nanorods were performed at condition of the various Zn complex concentration and growth temperature, 0.02 ~ 0.08 M and 60 ~ 80 $^{\circ}C$, respectably. We found from the SEM results that the diameter and length of ZnO nanorods were with increasing the growth temperature and Zn complex concentration. However, the growth condition in the two parameters wasmore than sensitive compared to Zn complex concentration on increasing the growth rate. From photoluminescence(PL) analysis, the strong band-edge emission for ZnO nanorod grown at 80 $^{\circ}C$ with 0.08 M indicated the fine crystallinity. Therefore, the diameter and length of ZnO nanorods have been able to control through the control of front growth parameters. Also, these ZnO nanorods grown low temperature will be available as building block for transparence flexible device applications.

  • PDF