• Title/Summary/Keyword: computer-based assessment

Search Result 651, Processing Time 0.035 seconds

A Study of Smart Healthcare Services Software Quality Satisfaction Rating System based on QoS(Quality of Service) Measurement Model (QoS(Quality of Service) 측정 모델을 참조한 스마트헬스케어서비스 소프트웨어 품질만족도 평가체계)

  • Noh, Si-Choon;Song, Eun-Jee
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.18 no.1
    • /
    • pp.149-154
    • /
    • 2014
  • Quality is the value that can be measured by observing the characteristics of the service quantity or quality. QoS is predictable service traffic to a minimum requirements what passed in network. In the course of Smart Medical Information System Development there exist some functional requirements to satisfy quality objectives. The functional smart domains of healthcare information systems consists of Patient Module, a smart sensing and communication domain, RFID Tag Readers and the behavior domain, Homecare Station Domain, Clinical Station. This study is performed on evaluation methodology of u-health service satisfaction quality of each domain. In this paper QoS metrics and the quality of medical information requirements, functional requirements are separated by. Quality parameters consists of six items and the functional requirements and quality requirements 20 details the five items and consist of 20 detailed items. On this study the quality evaluation methodology of Korean smart health information quality assessment matrix 2 - factor evaluation method is proposed. The overall framework of this paper is organizing the specific criteria of quality of medical information system and modeling quality evaluation process under all smart environment.

Operational Definition of Components of Logical Thinking in Problem-solving Process on Informatics Subject (정보 교과의 문제해결과정에서 논리적 사고력 구성요소에 대한 조작적 정의)

  • Yoon, Il-Kyu;Kim, Jong-Hye;Lee, Won-Gyu
    • The Journal of Korean Association of Computer Education
    • /
    • v.13 no.2
    • /
    • pp.1-14
    • /
    • 2010
  • Previous researches on the improvement of logical thinking in Informatics subject have used general logical thinking test and only limited improvement of logical thinking by programming learning result. In this study, the operational definition of the logical thinking in problem-solving process on Informatics education is different from the general logical thinking and the logical thinking of the other subjects. Firstly, we suggested the operational definition of components of logical thinking using the open questionnaire by expert and research team discussion. Also, we suggested the relationship between the operational definition and contents of the 'problem-solving methods and procedure' section in secondary Informatics subject. Finally, this study developed the evaluation contents based on the operational definition of components of logical thinking. The components of logical thinking which was required in problem-solving process on Informatics subject were ordering reasoning, propositional logic, controlling variables, combinatorial logic, proportional reasoning. We suggested the relationship between operational definition and problem-solving process and assessment of logical thinking in problem-solving process on Informatics subject. This paper will give meaningful insight to supply the guideline of the teaching strategy and evaluation methods for improving the logical thinking in Informatics education.

  • PDF

Development of Chicken Carcass Segmentation Algorithm using Image Processing System (영상처리 시스템을 이용한 닭 도체 부위 분할 알고리즘 개발)

  • Cho, Sung-Ho;Lee, Hyo-Jai;Hwang, Jung-Ho;Choi, Sun;Lee, Hoyoung
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.22 no.3
    • /
    • pp.446-452
    • /
    • 2021
  • As a higher standard for food consumption is required, the consumption of chicken meat that can satisfy the subdivided food preferences is increasing. In March 2003, the quality criteria for chicken carcasses notified by the Livestock Quality Assessment Service suggested quality grades according to fecal contamination and the size and weight of blood and bruises. On the other hand, it is too difficult for human inspection to qualify mass products, which is key to maintaining consistency for grading thousands of chicken carcasses. This paper proposed the computer vision algorithm as a non-destructive inspection, which can identify chicken carcass parts according to the detailed standards. To inspect the chicken carcasses conveyed at high speed, the image calibration was involved in providing robustness to the side effect of external lighting interference. The separation between chicken and background was achieved by a series of image processing, such as binarization based on Expectation Maximization, Erosion, and Labeling. In terms of shape analysis of chicken carcasses, the features are presented to reveal geometric information. After applying the algorithm to 78 chicken carcass samples, the algorithm was effective in segmenting chicken carcass against a background and analyzing its geometric features.

Fulfilling the Export Potential of Agricultural Production in the Context of Aggravating Global Food Crisis

  • Hassan Ali Al-Ababneh;Ainur Osmonova;Ilona Dumanska;Petro Matkovskyi;Andriy Kalynovskyy
    • International Journal of Computer Science & Network Security
    • /
    • v.24 no.7
    • /
    • pp.128-142
    • /
    • 2024
  • Creation and implementation of export-oriented strategy is an urgent issue of economic development of any country. In an export-oriented model of economic development, exports should be a means of promoting economic growth and a tool to strengthen existing and potential competitive advantages. Agricultural production is the key factor in exports and the source of foreign exchange earnings in many countries. However, the export potential of agricultural producers may be inefficiently fulfilled due to the heterogeneity of countries in terms of economic development, trade relations and border policy. The aim of the research is to study the nature, main trends and problematic aspects of fulfilling the export potential of agricultural production in the context of aggravating food crisis. The study involved general scientific methods (induction and deduction, description, analysis, synthesis, generalization) and special (statistical method, economic analysis, descriptive statistics and interstate comparisons, graphical method). The need to ensure food security by countries around the world urges the importance of the agricultural sector as a catalyst for economic development, sources of foreign exchange earnings, investment direction, etc. The study of agricultural specialization led to the conclusion that wheat and sugar are goods with the highest export potential. It is substantiated that the countries of South America, OECD, North America and Europe have the highest level of realization of export potential of agricultural production, and African countries are import-dependent. In addition, the low export orientation of Africa and Asia due to the peculiarities of their natural and climatic conditions is established based on the assessment of export-import operations in the regional context. The internal and external export potential of each of the regions is analysed. Economic and mathematical simulation of assessing the impact of the most important factors on the wheat exports volumes was applied, which allowed predicting wheat exports volume and making sound management decisions regarding the realization of the export potential of agricultural companies. The inverse correlation between the exports volume and wheat consumption per capita, and the direct correlation between the effective size and area of land used for wheat cultivation was established through the correlation and regression analysis.

Accuracy Evaluation of Bi-medium Deep Body Thermometer Based on Finite Element Simulation (유한 요소 시뮬레이션을 이용한 이중 매질 심부 체온계의 정확도 평가)

  • Sim, S.Y.;Ryou, H.S.;Kim, H.B.;Jeong, J.H.;Lee, S.J.;Kim, S.M.;Park, Kwang Suk
    • Journal of Biomedical Engineering Research
    • /
    • v.35 no.5
    • /
    • pp.160-168
    • /
    • 2014
  • Continuous body temperature monitoring is useful and essential in diverse medical procedures such as infection onset detection, therapeutic hypothermia, circadian rhythm monitoring, sleep disorder assessment, and gynecological research. However, the existing thermometers are too invasive or intrusive to be applied to long-term body temperature monitoring. In our previous study, we invented the bi-medium deep body thermometer which can noninvasively and continuously monitor deep tissue temperature. And the ratio of thermal resistances expressed as K-value should be obtained to estimate body temperature with the thermometer and it can be different under various measurement environments. Although the device was proven to be useful through preliminary simulation test and small group of human study, the experimental environment was restrictive in our previous approach. In this study, a finite element simulation was executed to obtain the K-value and evaluate the accuracy of bi-medium thermometer under various measurement environments. In addition, K-value estimation equation was developed by analyzing the influence of 5 measurement environmental factors (medium length, medium height, tissue depth, blood perfusion rate, and ambient temperature) on K-value. The results revealed that the estimation accuracy of bi-medium deep body thermometer based on computer simulation was very high (RMSE < $0.003^{\circ}C$) in various measurement environments. Also, bi-medium deep body thermometer based on K-value estimation equation showed relatively accurate results (RMSE < $0.3^{\circ}C$) except for one case. Although the K-value estimation technology should be improved for more accurate body temperature estimation, the results of finite element simulation showed that bi-medium deep body thermometer could accurately measure various tissue temperatures under diverse environments.

Estimation of Economic Losses on the Agricultural Sector in Gangwon Province, Korea, Based on the Baekdusan Volcanic Ash Damage Scenario (백두산 화산재 피해 시나리오에 따른 강원도 지역 농작물의 경제적 피해 추정)

  • Lee, Yun-Jung;Kim, Su-Do;Chun, Joonseok;Woo, Gyun
    • Journal of the Korean earth science society
    • /
    • v.34 no.6
    • /
    • pp.515-523
    • /
    • 2013
  • The eastern coast of South Korea is expected to be damaged by volcanic ash when Mt. Baekdusan volcano erupts. Even if the amount of volcanic ash is small, it can be fatal on the agricultural sector withering many plants and causing soil acidification. Thus, in this paper, we aim to estimate agricultural losses caused by the volcanic ash and to visualize them with Google map. To estimate the volcanic ash losses, a damage assessment model is needed. As the volcanic ash hazard depends on the kind of a crops and the ash thickness, the fragility function of damage assessment model should represent the relation between ash thickness and damage rate of crops. Thus, we model the fragility function using the damage rate for each crop of RiskScape. The volcanic ash losses can be calculated with the agricultural output and the price of each crop using the fragility function. This paper also represents the estimated result of the losses in Gangwon province, which is most likely to get damaged by volcanic ashes in Korea. According to the result with gross agricultural output of Gangwon province in 2010, the amount of volcanic ash losses runs nearly 635,124 million wons in Korean currency if volcanic ash is accumulated over four millimeters. This amount represents about 50% of the gross agricultural output of Gangwon province. We consider the damage only for the crops in this paper. However, a volcanic ash fall has the potential to damage the assets for a farm, including the soil fertility and installations. Thus, to estimate the total amount of volcanic ash damage for the whole agricultural sectors, these collateral damages should also be considered.

Reliability Analysis of Plane Stress Element According to Limit State Equations (한계상태방정식에 따른 평면응력요소의 신뢰성해석)

  • Park, Seok Jae;Choi, Wae Ho;Kim, Yo Suk;Shin, Yeong-Soo
    • Journal of Korean Society of Steel Construction
    • /
    • v.13 no.5
    • /
    • pp.567-575
    • /
    • 2001
  • In order to consider statistical properties of probability variables used in the structural analysis the conventional approach using the safety factor based on past experience usually estimated the safety of a structure Also the real structures could only be analyzed with the error in estimation of loads material characters and the dimensions of the members. But the errors should be considered systematically in the structural analysis Safety of structure could not precisely be appraised by the traditional structural design concept Recently new aproach based on the probability concept has been applied to the assessment of structural safety using the reliability concept Thus the computer program by the Probabilitstic FEM is developed by incorporating the probabilistic concept into the conventional FEM method. This paper estimated for the reliability of a plane stress structure by Advanced First-Order Second Moment method using von Mises, Tresca and Mohr-Coulomb failure criterions. Verification of the reliability index and failure probability of attained by the Monte Carlo Simulation method with the von Mises criterion were same as PFEM, but the Monte Carlo Simulation were very time-consuming. The variance of member thickness and load could influence the reliability and failure probability most sensitively among the design variables from the results of the parameter analysis. The proper failure criterion according to characteristic of materials must be used for safe design.

  • PDF

Implementing Instructional Modules for Engineering Ethics into Engineering Curricula (공학윤리 교육모듈 컨텐츠를 이용한 전공교과목에서의 공학윤리 교육)

  • Lee, Young-Nam;Kim, Dae-Wook;Yu, Ji-Beom;Hwang, Sung-Ho;Kim, Hyun-Soo
    • Journal of Engineering Education Research
    • /
    • v.10 no.4
    • /
    • pp.78-92
    • /
    • 2007
  • This study presents how the engineering ethics instructional modules have been developed based on Korean culture and how they are implemented into the existing engineering curricula at Sungkyunkwan University. The engineering ethics instructional modules were designed to be taught by engineering faculty members who did not have any teaching experience in ethics. As a result, it was determined that the engineering ethics instructional modules should include a detailed instructor lesson plan and all supporting resources such as slides (Power Point base), and handouts, or assessment units (pre- and post-test). Two 75 minute modules developed in this study consist of the diverse instructional activities for various student group sizes. In order to improve students' interests and classroom attention, various visual and audio resources such as famous movies, cartoons, and poems were included in the instructional resources. In addition, a number of case studies which might happen in the students' daily lives were chosen. The resulting ethical module No. 1 has been instructed in the existing engineering classes during the 1st semester in 2007. Overall, the students reported positive impressions of the modules and the faculty members also reported favorable perceptions of the modules. Also, team based activities encouraged students to participate in constructing the event trees, which are a basic analysis tool for ethics case studies. The results of this study will provide a guideline of implementing engineering ethics into the engineering curricula to other engineering programs and schools.

An Analysis of IS-Related Curriculums in Korea Based on the IS 2002 Model Curriculum (IS 2002 표준교육과정에 입각한 국내 정보시스템 관련학과의 교육과정에 대한 분석)

  • Ryu, Young-Tae
    • Management & Information Systems Review
    • /
    • v.29 no.3
    • /
    • pp.149-171
    • /
    • 2010
  • The purpose of this research is an assessment of Information Systems(IS) curriculums in Korea based on the IS 2002 model curriculum. Out of the 201 Korean universities, 60 universities have the IS discipline as a major or a department having an independent curriculum. Out of these 60 universities, 38 universities(63.4%) have the IS discipline in the business schools while the IS discipline in the rest of universities is located under the social science school and others. Information Systems as a field of academic study exists under a variety of different names. The different labels(Information Systems, Management Information Systems, Computer Information Systems, Information Management, e-commerce, e-business, etc.) reflect historical development of the field, different ideas about how to characterize it, and different emphases when programs were began. The result of mapping the IS courses into the IS 2002 model curriculum supports the fact that management as a reference discipline that provides underlying theories for IS as a particular new discipline should be its academic home. Within the IS courses, information technology area is the most popular. and followed by information systems fundamentals area, information systems theory and practice area, information systems development area, and information systems deployment and management process area.

  • PDF

A Performance Comparison of Machine Learning Classification Methods for Soil Creep Susceptibility Assessment (땅밀림 위험지 평가를 위한 기계학습 분류모델 비교)

  • Lee, Jeman;Seo, Jung Il;Lee, Jin-Ho;Im, Sangjun
    • Journal of Korean Society of Forest Science
    • /
    • v.110 no.4
    • /
    • pp.610-621
    • /
    • 2021
  • The soil creep, primarily caused by earthquakes and torrential rainfall events, has widely occurred across the country. The Korea Forest Service attempted to quantify the soil creep susceptible areas using a discriminant value table to prevent or mitigate casualties and/or property damages in advance. With the advent of advanced computer technologies, machine learning-based classification models have been employed for managing mountainous disasters, such as landslides and debris flows. This study aims to quantify the soil creep susceptibility using several classifiers, namely the k-Nearest Neighbor (k-NN), Naive Bayes (NB), Random Forest (RF), and Support Vector Machine (SVM) models. To develop the classification models, we downscaled 292 data from 4,618 field survey data. About 70% of the selected data were used for training, with the remaining 30% used for model testing. The developed models have the classification accuracy of 0.727 for k-NN, 0.750 for NB, 0.807 for RF, and 0.750 for SVM against test datasets representing 30% of the total data. Furthermore, we estimated Cohen's Kappa index as 0.534, 0.580, 0.673, and 0.585, with AUC values of 0.872, 0.912, 0.943, and 0.834, respectively. The machine learning-based classifications for soil creep susceptibility were RF, NB, SVM, and k-NN in that order. Our findings indicate that the machine learning classifiers can provide valuable information in establishing and implementing natural disaster management plans in mountainous areas.