• Title/Summary/Keyword: computer-aided control system design

Search Result 104, Processing Time 0.03 seconds

Design of a Bridge Transported ServoManipulator System for a Radioactive Environment

  • Park, B.S.;Jin, J.H.;Ahn, S.H.;Song, T.G.;Kim, D.G.;Yoon, J.S.
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2003.10a
    • /
    • pp.2514-2518
    • /
    • 2003
  • The KAERI Spent Fuel Remote Technology Development (SFRTD) Department is developing the remote maintenance and repair equipment, which is used in a hot cell in an intense radiation field, as part of a project to develop the Advanced spent fuel Conditioning Process (ACP). Although several mechanical master-slave manipulators (MSMs) is mounted on the hot cell wall, their reach will be limited and cannot access areas for all the ACP equipment maintenance. A Bridge Transported ServoManipulator (BTSM) has been designed to overcome the limitation of access areas that is a drawback of MSMs for the ACP equipment maintenance. The BTSM system consists of four components: a transporter with telescoping tubeset, a slave manipulator, a master manipulator, and a remote control system. The BTSM system has been designed by Solid Edge that is a 3D computer-aided design (CAD) software, except for the remote control system. The master manipulator and the slave manipulator are kinematically similar in design, except for the handle and the tong, respectively. The manipulators have 6 degrees of freedom (DOF) plus the jaws motion. The transporter has traveling, traverse, and hoisting motion to position the slave manipulator.

  • PDF

Comparison of the Marginal and Internal Gap of Metal Coping according to Processing Method of Dental CAD/CAM System (치과 캐드캠 시스템의 가공 방식에 따른 금속 코핑의 적합도 비교)

  • Kim, Dong-Yeon;Jeon, Jin-Hun;Park, Jin-Young;Kim, Ji-Hwan;Kim, Hae-Young;Kim, Woong-Chul
    • Journal of dental hygiene science
    • /
    • v.15 no.1
    • /
    • pp.12-17
    • /
    • 2015
  • The purpose of this study was to evaluate the marginal and internal gap of metal coping fabricated using additive manufacturing (AM) group and subtractive manufacturing (SM) group by dental computer-aided design (CAD)/computer-aided manufacturing (CAM) systems. Twenty same cases of stone models of abutment teeth 16 by the universal numbering system were manufactured and scanned. Ten metal copings of control group were fabricated using SM and ten metal coping of experimental group were fabricated using AM. Marginal and internal gap of copings were measured using the silicone replica technique and digital microscope (${\times}140$). The data were analyzed using IBM SPSS 21.0 Statistical Software for independent samples t-test (${\alpha}=0.05$). Mean${\pm}$ standard deviation (SD) of marginal and internal gap total size of SM group was $101.00{\pm}40.33{\mu}m$ of AM group was $83.61{\pm}40.37{\mu}m$. Mean${\pm}$SD of marginal and internal gap total size of SM group was significantly greater than that of AM group (p<0.05). This study showed that AM metal copings had a better marginal and internal gap than SM metal copings.

A study on computer-aided synthesis of process control system structure (전산기를 이용한 공정 제어구조 합성에 관한 연구)

  • Lo, Kyun;Yoon, En-Sup
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1987.10b
    • /
    • pp.670-673
    • /
    • 1987
  • The structure of chemical process has become increasingly complex, due to better management of energy and raw materials. As a consequence, the design of control systems for complete plants now constitutes the focal point of engineering interest, rather than controller designs for single processing units. Instead of traditional methods based on complex mathematical model, chemical processes are represented by structural array and cause-and-effect graph to apply non-numerical problem-solving techniques. A systematic logical procedure to synthesize alternatives of control system structure and some heuristic rules to select a feasible solution from the vast number of alternatives that are possible are considered in this study.

  • PDF

Liner Analysis of IMV Proportional Flow Control Valve Static Characteristics (IMV 비례 유량제어밸브 정특성 선형해석)

  • Jung, Gyuhong
    • Journal of Drive and Control
    • /
    • v.16 no.4
    • /
    • pp.56-64
    • /
    • 2019
  • Recently, as the environmental regulation for earth moving equipment has been tightened, advanced systems using electronic control have been introduced for energy savings. An IMV(Independent Metering Valve), which consists of four 2-way valves, is one of the electro-hydraulic control systems that provides more flexible controllability and potential for energy savings in excavators, when compared to the conventional 4-way spool valve system. To fully realize an IMV, a two-stage bi-directional flow control valve which can regulate the large amount of flow in both directions, should be developed in advance. A simple design that allows proportional flow control to apply the pilot pressure from the current-controlled solenoid to the spring loaded flow control spool and thus valve displacement, is proportional to the solenoid current. However, this open-loop type valve is vulnerable to flow force which directly affects the valve displacement. Force feedback servo of which the position loop is closed by the feedback spring which interconnects the solenoid valve and flow control spool, could compensate for the flow force. In this study, linearity for the solenoid current input and robustness against load pressure disturbance is investigated by linear analysis of the static nonlinear equations for the IMV proportional flow control valve with feedback spring. Gains of the linear system confirm the performance improvement with the feedback spring design.

A Development of STL-Interfaced Constant-Speed Path Controller

  • Kim, Seungwoo;Minkook Ko;Jaechul Bang
    • Proceedings of the IEEK Conference
    • /
    • 2002.07c
    • /
    • pp.2027-2030
    • /
    • 2002
  • SFFS(Solid Freeform Fabrication System) is commercializing to rapid prototyping concept in world- wide some corporations including the U.S.A, have much technological problems yet and need new mode for agile solid freeform fabrication as well as prototyping. In this paper, we design an algorithm that the cutting path of laser beam, on the SFFS, is controlled with constant speed. The designed algorithm fer constant-speed path control is implemented and experimented in the CAFL$\^$VM/ (Computer Aided Fabrication of Lamination for Various Material) system, the new SffS which is developed in this paper. Finally, the ceramic, new material developed in this paper, cut and fabricated. The dimensional accuracy and mechanical stability of the 3D object is confirmed through the experiment, also.

  • PDF

Time-Delay System Toolbox and its Application (시간 지연 시스템에 대한 툴박스와 그 응용)

  • Kwon, Wook-Hyun;Kim, Arkadii;Han, Soo-Hee;Vladimir Pimenov;Andrew Lozhnikov;Olga Onegova
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1998.10a
    • /
    • pp.147-150
    • /
    • 1998
  • The report presents basic functions of Time-delay System Toolbox (for MATLAB) -the general-purpose software package for Computer Aided Design of control systems with delays. The Toolbox is a collection of algorithms, expressed mostly in m-files for simulating and analysis of MIMO linear and nonlinear systems with discrete and distributed (time-varying) delays.

  • PDF

A Study on the Implementation of an Agile SFFS Based on 5DOF Manipulator (5축 매니퓰레이터를 이용한 쾌속 임의형상제작시스템의 구현에 관한 연구)

  • Kim Seung-Woo;Jung Yong-Rae
    • Journal of the Institute of Electronics Engineers of Korea SC
    • /
    • v.42 no.1
    • /
    • pp.1-11
    • /
    • 2005
  • Several Solid Freeform Fabrication Systems(SFFS) are commercialized in a few companies for rapid prototyping. However, they have many technical problems including the limitation of applicable materials. A new method of agile prototyping is required for the recent manufacturing environments of multi-item and small quantity production. The objectives of this paper include the development of a novel method of SFFS, the CAFL/sup VM/(Computer Aided Fabrication of Lamination for Various Material), and the manufacture of the various material samples for the certification of the proposed system and the creation of new application areas. For these objectives, the technologies for a highly accurate robot path control, the optimization of support structure, CAD modeling, adaptive slicing was implemented. However, there is an important problem with the conventional 2D lamination method. That is the inaccuracy of 3D model surface, which is caused by the stair-type surface generated in virtue of vertical 2D cutting. In this paper, We design the new control algorithm that guarantees the constant speed, precise positioning and tangential cutting on the 5DOF SFFS. We develop the tangential cutting algorithm to be controlled with constant speed and successfully implemented in the 5DOF CAFL/sup VM/ system developed in this paper. Finally, this paper confirms its high-performance through the experimental results from the application into CAFL/sup VM/ system.

A Numerical Study for Performance of Automotive HVAC System (전산해석에 의한 자동차용 HVAC 시스템의 성능 연구)

  • Lee Dae-Woong;Yoo Seong-Yeon
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.16 no.11
    • /
    • pp.1084-1091
    • /
    • 2004
  • In automotive air handling system, mixing of air streams by the cooler and the heater affects the comfort of cabin room. In the present study, computer-aided analysis is done to improve the thermal comfort and for the optimal design of automotive HVAC system. The simulation software used was FLUENT, and complicate geometries were created by three dimensional CAD. Air flow volume, fir distribution rate and temperature controllability and temperature differences between upper and lower discharge air are analyzed through numerical simulation at vent, floor and defrost mode. Also, velocity vector of sirocco fan is investigated through the scroll housing. The velocity vector magnitude is larger at lower region of fan than that at any other regions. Recirculation and disturbance of air is relatively high near the cut-off edge in the scroll housing. By using the results of this study, the time for prototype production can be reduced and timely decisions can be made to determine initial design directions.

A Study on Constant-Speed Position Control of Solid Freeform Fabrication System (임의형상가공시스템의 정속위치제어)

  • Jung, Yong-Rae;Ko, Min-Kook;Kim, Seung-Woo
    • Proceedings of the KIEE Conference
    • /
    • 2002.11c
    • /
    • pp.75-78
    • /
    • 2002
  • SFFS(Solid Freeform Fabrication System) is commercializing to rapid prototyping concept in world-wide some corporations including the States, have much technological problems yet and need new mode for agile solid freeform fabrication as well as prototyping. In this paper, we design an automatic control algorithm that the cutting path of laser beam, on the SFFS, is controlled with constant speed. The designed algorithm for constant-speed path control is implemented and experimented in the $CAFL^{VM}$ (Computer Aided Fabrication of Lamination for Various Material) system, the new SFFS which is developed in this paper. Its process is an automated fabrication method in which a 3D object is constructed from STL(SToreoLithography) 2D data, derived from CAD 3D image, by sequentially laminating the part cross-sections. The constant-speed path control is started from the STL data. After STL file is modified in data format to be available for control. The fabrication of the 2D part is, with constant speed, conducted from the 23 position data by laser beam. we confirm its high-performance through experiment results from the application into $CAFL^{VM}$ system.

  • PDF

Fast Evaluation of a dynamic B-spline Curve and Surface (동적인 B-spline 곡선과 곡면의 효율적인 평가방법)

  • Ryu Joonghyun;Kim Deok-Soo
    • Proceedings of the Society of Korea Industrial and System Engineering Conference
    • /
    • 2002.05a
    • /
    • pp.461-466
    • /
    • 2002
  • In many applications of computer aided geometric design and computer graphics, B-spline is one of the most popular representation for curves and surfaces, and the evaluation of B-spline curves and surfaces is the most frequently used operation. For the evaluation and others, the power form representation of the curves and surfaces is preferred because it is possible to speed-up the operation using Horner's rule. In this paper, we present a new algorithm for the above-mentioned conversion focusing on a dynamic case. Experiment shows that the proposed algorithm significantly outperforms the conventional approach when one or more control points of a B-spline curve and surface are dynamically moving.

  • PDF