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Abstract:

The report presents basic functions of Time-delay System Toolbox (for MATLAB) -

the general-purpose software package for Computer Aided Design of control systems with delays. The
Toolbox is a collection of algorithms, expressed mostly in m-files for simulating and analysis of MIMO
linear and nonlinear systems with discrete and distributed (time-varying) delays.
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1. Introduction

At present there are elaborated effective numerical
methods and corresponding software for solving dif-
ferent classes of ordinary differential equations (ODE)
and partial differential equations. The progress in this
direction results in wide application of these types
of equations in practice. Another class of differential

equations is represented by delay differential equations -

(DDE), also called systems with delays, hereditary
systems, functional differential equations. It is easy to
understand that the delay occurs practically in many
mathematical models. Though at present different
theoretical aspects of DDE theory are developed with
almost the same completeness as the corresponding
parts of ODE theory, there were no effective numerical
methods of solving general classes DDE (for example,
for general DDE the classical Runge-Kutta method was
suggested only in continuous form [4] which is difficult
for software realization), as consequence, there are
no general-purpose software packages for simulating
systems with delays. This is, apparently, one of the
main reasons why DDE are not so widely used in
practice unlike ODE, though such type equations
describe many phenomena more accurately than ODE.

In the papers [1, 2, 3] there was elaborated new ap-

proach to constructing simple and effective numerical
methods for systems with delays. These methods are
the basis of numerical techniques of the suggested in
this report Toolbox for simulating time-delay systems.
The distinguishing feature of the Toolbox consists not
only in new effective numerical algorithms, but also in
new control design methods [2] such as linear quadratic
regulator (LQR) for system with delays.
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Time-delay System Toolbox provides support for:

- numerical simulation of general linear and non-
linear systems with delays with discrete and dis-
tributed delays,

- time-domain analysis of linear systems with de-
lays,

- stability analysis including pole location algo-
rithm, coefficient stability conditions and special
numerical test method for stability,

- new analytical design techniques for linear
quadratic regulator problem.

Remark. The numerical methods and control design
algorithms, realized in Time-Delay System Toolbox,
are a direct generalization of the corresponding meth-
ods of ODE case, i.e. if delays disappear then all
algorithms coincide with the corresponding numerical
and control algorithms for ODE.

2. What algorithms are used

2.1. General remarks
In the Toolbox we realized general algorithms which
can be applied for modelling and analysis of:

- MIMO time-delay systems,

- systems with distributed and time-varying delays,
so we use only state space representation of systems
with delays and the corresponding methods, because
frequency domain approach cannot be applied for these
problems.

2.2. Numerical algorithms

Simulation of systems with delays is realized on
the basis of new numerical Runge-Kutta-like meth-
ods [1, 2, 3].
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The distinguishing features of numerical algorithms
are the following:

1 the numerical methods for DDE are direct analo-
gies of the corresponding classical numerical
methods of ODE theory, ie. if delays disap-
pear, then the methods coincide with ODE meth-
ods (note, in the frameworks of other approaches
to constructing numerical methods for general
classes DDE there is no such kind of succession
of algerithms);

2 in contrast to other methods the proposed numer-
ical algorithms don’t depend on specific form of
systems with delays, so the corresponding numer-
ical schemes are the same for different classes of
DDE (this allows to elaborate sufficiently simple
structure of software algorithms).

Remark. The numerical algorithms work for piece-
wise continuous initial functions.

2.3. Time-domain analysis

On the basis of the numerical algorithms the m-files
for time-domain analysis (time-response) of general
linear systems with delays are elaborated.

2.4. Stability

One of the most important characteristic of (linear)
systems is the stability of the corresponding solutions.
The Toolbox contains some algorithms of verification
stability of linear time-invariant systems with delays.

For systems with distributed and time-varying
delays there are no effective algorithmic methods of
verification the stability property. So we propose some
procedures of testing stability property for general
linear systems with delays using numerical simulation.

2.5. Control algorithms

LQR technique is one of the most useful methods for
designing closed-loop controller for ODE. Note, in the
Control System Toolbox for MATLAB the effective pro-
cedure of designing linear quadratic regulator for linear
finite-dimensional systems (on the basis of solving ARE
equation) is realized.

However, from the early sixties, when LQR problem
for systems with delays was stated, up to now there are
no approximate methods of its solving that could be
applicable for software realization 6

In the paper [2], new approach to constructing ez-
act solutions of generalized LQR problems for systems
with delays is developed. These analytical methods of
designing liner quadratic regulator for systems with de-
lays (which can be considered as direct generalization
of the corresponding methods of solving LQR problem
for ODE) are realized in the Toolbox.

5Though there were proposed a few approximate methods of
solving LQR problem (see, for example, [5, 6], however these ap-
proaches are complicated for practical implementation and cre-
ating software packages.
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3. Functions of the Toolbox

1. Numerical algorithms
Explicit Runge-Kutta-like methods (fde45)
Lottka-Volterra delay system (1v45)
Linear time-delay system (rk45lin, rk45lie)

2. Time-domain analysis
Initial condition response (initiald)
Arbitrary input response (inputd)
Step input response (stepd)
Impulse response (impulsed)

3. Stability
Test for stability {test, teste)
Pole location (pole)
Coefficient stability conditions {(coefl, coefZ)

4. Control algorithms
Generalized Riccati equations (gre)
Optimal gain (lqdelay)
Generalized LQ regulator (clso)
Arbitrary linear feedback (clsim)
Positiveness of quadratic matrices (isdef)
Positiveness of quadratic functionals (costfun)

4. Representation of time-delay systems
in the Toolbox

4.1. Description of DDE by finite number of
functions and integrals
Systems with delays

z(t) =f(t,.:l:(t),1)(t+8)),—7‘ <s <90, (1)

are infinite dimensional systems because of the presence
of the functional component z(t + s), -7 < s < 0,
which characterizes delays. So the right part of sys-
tem (1) is a mapping f(¢,z,y(*)) : [to,to + 6] x R™ x
Q[-7,0) - R™ and the most problem of simulating
of such systems consists in describing of f(¢,z,y(-)) by
finite number of parameters 7

Analyzing the structure of systems with delays we
can see that in concrete cases right parts of such systems
are combinations of finite dimensional functions and
integrals and can be presented in following forms (or
their combinations):

Q
ft,z,y() = g(t,z) + j B(s,y(s))ds (2)

g(,) :RxR* > R", B(,,") : [-7,0) x R* - R,

7Because for computer simulatior usually only finite a.go-
rithms with finite number of input parameters are used.



1]
ft,2,u()) = /_ n(t, 5,2, y(s))ds @)
() Rx [-1,0] x R* x R® - R™,
0
flt,z,y()) = / (s, y(s))ds 0
—7*(t)
() :R = 0,7],8(,) : [-7,0] x R* —» R",
f(t,m,y(-)) = g(t,.’l!) + P[y(ﬁT)] (5)
P[]:R" - R",
ftu()) = Ply(=r* ()] (6)

() : R = (0,7], P[]: R" - R"™.

So every of mappings (2) - (6) can be described just
by finite number of functions. For example, to describe
mapping (4) we should set two functions 7*(-) and
u(-,+). All these functions can be described as m-files .

4.2. Conditional representation of DDE

For structural presentation of time-delay systems it
is convenient to use the following conditional represen-
tation

(h = {z,y(-)} € H), i.e. we just write in the right-hand
side of the equations the mapping f(¢,z,y(-)) (without
any indication of solutions).

Remark. Let us remember that for ODE

£(t) = g(t, z(t))

the conditional representation is

& =g(t ), (8)

i.e. the argument ¢ is not pointed out in state variable
z(t), and we just write the mapping g(t,z) (without
any indication of solutions) in the right-hand side of
the equations.

(gt,2) : Rx R" > R")

4.3. Initial condition for DDE

We consider the initial conditions of systems with
delays as the pair h = {2°,3°(:)} € H of a vector z° €
R" and a function 4°(-) € Q{—7,0), i.e.

z(to) = 2o, (9)

21, (s) = 4°(s), —T <5 <0 (10)

So in order to simulate systems with delays it is neces-
sary to set into the m-files initial data as {z°,y°(")}.
Remark. The initial function y°(-) can be described
using m-file.

4.4. Linear control systems with delays

Let us consider linear system with delay

(t) = Aoz(t) + A z(t ~ 7) +
0
G(s)z(t +s)ds+ Bu.

-7

(11)

where A, A., B are constant n Xn, nXn, n Xr matrices,
z€R™ ueR". :

In order to simulate this system using Toolbox it is
necessary to define the following finite number of pa-
rameters:

- matrices A, 4,, B,
- the matrix-function G(s),

u(t)

- open-loop control
U(t, z, y()))v

- an initial time-moment tg,

(closed-loop control

- an initial point z°,

an initial prehistory y2(-) = {3°(s), -7 < s < 0}.

Remark. The matrix-function G(s) can be described
using m-file.

5. Time-domain analysis (example)

The present version of Time-Delay System Tool-
box provides four functions for time-domain analysis
of linear system with delays. The figurel and figure2
show the simulation results by initiald and impulsed
for system

B(t) = [

0 t
{&%3}M)

[ 0.9 0.1 ]z

y(t)

System (12) is unstable (because this system has two
roots with positive real parts), so trajectories are di-
verging.

(12)

] 12 14 16 18 20
Time (secs). |

Figure 1: Response due to initial value
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Figure 2: Response due to impulse input

6. LQR design technique
(with an example)

LQR method (basing on solution of algebraic Riccati
equation) is the universal tool for designing stabilizable
controller for ODE. In case of DDE the most difficulties
of realization of the corresponding LQR technique is to
find solutions of the specific system of generalized Ric-
cati equations (GRE), consisting of algebraic equations,
ordinary differential equations and partial differential
equations.

In the Toolbox we realized procedure of designing
optimal LQR controller based on explicit form of GRE
solutions obtained in [2].

The design procedure of optimal control consists of
three steps.

1 Commands gre and lqdelay calculate the ma-
trices C, Do, D), Da, related with the optimal
control

u(z,y(-)) =Cz+ Dy /j

T

eP12D, y(s)ds.

2 Function clso forms the corresponding closed-
loop system and allows to simulate it.

3 Command test allows to simulate the optimal
closed-loop system with respect to the specific set
of initial base functions (polynomials, sin, cosine,
etc). Using this function it is possible to check
stability of the closed-loop system with respect
to initial function space spanned on correspond-
ing base functions.

Besides that, Toolbox offers some additional
functions. For example, costfun calculates the ap-
proximate value of the cost functional of LQR problem.
Using isdef one can check the definetness of a matrix
which is the finite dimensional approximation of the
optimal value quadratic functional.

Applying described LQR algorithms to system (12)
we find the form of optimal control

0
WOz, y()) = [ -1 —2.6469]z+/ {{o -0.3330]
-5
( 0 -03330] 0.1053 0.1921 ()}
ezp(| 1 _pgsia | X% | —00052 0.1207 |V

Figure 3 shows that the designed control stabilizes the
system (12).

Closed-loop control by proposed method
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Figure 3: Response due to optimal control

7. Conclusion

Time-Delay System Toolbox is, to authors’ knowl-
edge, the first general purpose software for simulating
and analysis of systems with delays. We would appre-
ciate comments and suggestions for the next version of
the Toolbox.
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