• 제목/요약/키워드: computer topological (product) space

검색결과 3건 처리시간 0.11초

KD-(k0, k1)-HOMOTOPY EQUIVALENCE AND ITS APPLICATIONS

  • Han, Sang-Eon
    • 대한수학회지
    • /
    • 제47권5호
    • /
    • pp.1031-1054
    • /
    • 2010
  • Let $\mathbb{Z}^n$ be the Cartesian product of the set of integers $\mathbb{Z}$ and let ($\mathbb{Z}$, T) and ($\mathbb{Z}^n$, $T^n$) be the Khalimsky line topology on $\mathbb{Z}$ and the Khalimsky product topology on $\mathbb{Z}^n$, respectively. Then for a set $X\;{\subset}\;\mathbb{Z}^n$, consider the subspace (X, $T^n_X$) induced from ($\mathbb{Z}^n$, $T^n$). Considering a k-adjacency on (X, $T^n_X$), we call it a (computer topological) space with k-adjacency and use the notation (X, k, $T^n_X$) := $X_{n,k}$. In this paper we introduce the notions of KD-($k_0$, $k_1$)-homotopy equivalence and KD-k-deformation retract and investigate a classification of (computer topological) spaces $X_{n,k}$ in terms of a KD-($k_0$, $k_1$)-homotopy equivalence.

DIGITAL TOPOLOGICAL PROPERTY OF THE DIGITAL 8-PSEUDOTORI

  • LEE, SIK;KIM, SAM-TAE;HAN, SANG-EON
    • 호남수학학술지
    • /
    • 제26권4호
    • /
    • pp.411-421
    • /
    • 2004
  • A digital $(k_0,\;k_1)$-homotopy is induced from digital $(k_0,\;k_1)$-continuity with the n kinds of $k_i$-adjacency relations in ${\mathbb{Z}}^n$, $i{\in}\{0,\;1\}$. The k-fundamental group, ${\pi}^k_1(X,\;x_0)$, is derived from the pointed digital k-homotopy, $k{\in}\{3^n-1(n{\geq}2),\;3^n-{\sum}^{r-2}_{k=0}C^n_k2^{n-k}-1(2{\leq}r{\leq}n-1(n{\geq}3)),\;2n(n{\geq}1)\}$. In this paper two kinds of digital 8-pseudotori stemmed from the minimal simple closed 4-curve and the minimal simple closed 8-curve with 8-contractibility or without 8-contractibility, e.g., $DT_8$ and $DT^{\prime}_8$, are introduced and their digital topological properties are studied by the calculation of the k-fundamental groups, $k{\in}\{8,\;32,\;64,\;80\}$.

  • PDF