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ON COMPUTER TOPOLOGICAL FUNCTION SPACE

Sang-Eon Han and Dimitris N. Georgiou

Abstract. In this paper, we give and study the notion of computer
topological function space between computer topological spaces with ki-
adjacency, i ∈ {0, 1}. Using this notion, we study various properties of
topologies of a computer topological function space.

1. Introduction

In this paper, we consider a set in Zn as a Khalimsky grid with graph k-
connectivity, i.e., a Khalimsky topological space with k-adjacency. For an intro-
duction and survey to digital and computer topology, see [3, 11, 12, 15, 19, 20].
Recently, the paper [3] investigates various properties of a homeomorphism in
Khalimsky topology and the paper [21] establishes a digital version of Jordan
curve theorem. Besides, the paper [18] treats an extension problem of a con-
tinuous map f : A → Z for A ⊂ Zn from a Khalimsky topological point of
view. Since a Khalimsky continuous map of two Khalimsky topological spaces
need not preserve a k-connectivity [12] (see Example 2.4), we need another
continuity such as Khalimsky continuity preserving a k-connectedness.

In general, by computer or digital topology is meant the mathematical recog-
nition of a set X ⊂ Zn, e.g., a development of tools implementing topological
concepts for use in the sciences and engineering [12]. More precisely, in order
to study an object in Zn, while digital topology treats an object in Zn with
both its discrete topological structure and one of the k-adjacency relations of
Zn, computer topology can uses all kinds of topological structures and related
mathematical tools, e.g., Khalimsky product topology with k-adjacency and
various continuities from the view point of computer topology [12]. Digital
and computer topology grew out of digital geometry expanded into applica-
tions where significant topological issues arise. Thus, they may be of interest
for both computer scientists who try to apply topological knowledge for in-
vestigating some properties of an object in Zn in relation with the studies of
image processing, pattern recognition, mathematical morphology, and so forth
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and mathematicians who want to use a computer to solve complicated topologi-
cal problems. They play significant roles in computer graphics, image synthesis,
image analysis, and so forth [12].

In this paper, we give and study the notion of generalized Khalimsky (k0, k1)-
continuous function (briefly, GKD-(k0, k1)-continuous function) between gen-
eralized computer topological spaces with ki-adjacency, i ∈ {0, 1}. Using this
notion, we study computer topologies on subsets of Zn, where n is a natural
number. This study is an application on function spaces.

This paper is organized as follows. In Section 2, we give several basic no-
tions and discuss a limitation of Khalimsky continuity. In Section 3, we define
and study the notion of GKD-(k0, k1)-continuity between generalized computer
topological spaces with ki-adjacency, i ∈ {0, 1}. In Section 4, we study some
topological properties of a computer topological function space. In Section 5,
we give some concluding remarks.

2. Preliminaries

By N, Z, and R we denote the set of all natural numbers, integers, and real
numbers, respectively. Let a, b ∈ Z with a ≤ b and [a, b] := {x ∈ R : a ≤ x ≤ b}.
Then, the set

[a, b] ∩ Z
denoted by [a, b]Z is called a digital interval.

Let n ∈ N, Zn = Z× · · · × Z︸ ︷︷ ︸
n−tuples

, and p = (p1, . . . , pn), q = (q1, . . . , qn) ∈

Zn. We say that two distinct points p and q are k(m, n)- (briefly, k-)adjacent
according to the number m [7], where m ∈ N with 1 ≤ m ≤ n, if

(1) there are at most m distinct indices i such that |pi − qi| = 1, and
(2) for all indices i such that |pi − qi| 6= 1, we have pi = qi.
Hereafter, this operator establishing the adjacency relations of Zn is called

(CON?). More precisely, by N∗
k (p) we denote the set of the points q ∈ Zn

which are adjacent to a given point p according to (CON?) and the number
k := k(m,n) is the cardinal number of N∗

k (p) called the k-neighbors of p [17]
expect the point p. Consequently, the k-adjacency relations of Zn derived
from (CON?) are exactly the generalization of the commonly used 4- and 8-
adjacency of Z2 and 6-, 18-, and 26-adjacency of Z3. Concretely, the number
m in (CON?) determines one of the k-adjacency relations of Zn [5] (see also
[7, 8, 10]), as follows
(2.1)

k ∈
{

3n − 1(n ≥ 2), 3n −
r−2∑
t=0

Cn
t 2n−t − 1(2 ≤ r ≤ n− 1, n ≥ 3), 2n(n ≥ 1)

}
,

where Cn
t = n!

(n−t)! t! .

So, for example, we have the following [13].
(i) on Z2, k ∈ {8, 4},
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(ii) on Z3, k ∈ {26, 18, 6},
(iii) on Z4, k ∈ {80, 64, 32, 8},
(iv) on Z5, k ∈ {242, 210, 130, 50, 10}, and
(v) on Z6, k ∈ {728, 664, 472, 232, 72, 12}.
The k-adjacency relations of (2.1) can be rewritten in a simpler and more

generic form as follows.

Proposition 2.1 ([14]). k(m,n) =
∑n−1

i=n−m 2n−iCn
i , where Cn

i = n!
(n−i)! i! .

For n ∈ N, a digital picture is represented as a quadruple (Zn, k, k̄, X), where
X is a subset of Zn, the number k is for X taken from Proposition 2.1, and k̄
is for Zn − X. The pair (X, k) in (Zn, k, k̄, X) is called a discrete topological
space (or a set) with k-adjacency (briefly, a space if not confused). In what
follows every space (X, k) is considered in a digital picture (Zn, k, k̄, X), where
(k, k̄) ∈ {(k, 2n), (2n, k̄)} with k 6= k̄ except for the case (Z, 2, 2, X) [17]. But,
in this paper we will not concern with the k̄-adjacency. For a space (X, k) in
Zn and two points x and y in X, if there is a positive integer m ≥ 1 and a map
f : [0,m]Z → X such that f(0) = x0 = x, f(1) = x1, . . ., f(m) = xm = y and
further, xi and xi+1 are k-adjacent, i ∈ [0,m − 1]Z, then the map f is called
a k-path between x and y in the space (X, k) and the number m is called the
length of this k-path [17]. If x = x0 = xm = y, then the above k-path f is
called closed [17]. If x 6= y and there is a k-path between x and y, then the
points x and y are called k-connected. Also, if any two points are k-connected,
then the space (X, k) is called k-connected [17, 20]. For (X, k), a point x ∈ X
is called isolated if it is not k-connected with any point in X [17]. If a set X
is a singleton set, then X is assumed to be k-connected for any k-adjacency.
Since a digital object in Zn can be recognized to be a discrete topological space
induced from the discrete topological space (Zn, Tn), n ∈ N, we consider the
following.

Definition 1 ([7]). Let (X, k) be a (discrete topological) space (or a set) with
k-adjacency, x, y ∈ X.

(1) By lk(x, y) we denote the length of a shortest simple k-path from x to y
in X. Furthermore, we say that lk(x, y) = ∞ if there is no k-path from x to y.

(2) By Nk(x, ε) we denote the set

(2.2) {y ∈ X : lk(x, y) ≤ ε} ∪ {x}.
Besides, Nk(x, ε) = {x} for any ε ∈ N if the point x is isolated. This set is
called a k-neighborhood of x with radius ε.

Consider a set X ⊂ Zn with k-adjacency of Zn, denoted by (X, k). In
relation to the digital continuity of a map f : (X, k0) → (Y, k1), we may
consider that for two points x0 and x1 are k0-adjacent their images by f are
required to be k1-adjacent or equal to each other. Thus, motivated by the
digital continuity of [20] and the (k0, k1)-continuity of [2], we obtain the notion
of digital (k0, k1)-continuity in a form:
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Proposition 2.2 ([7], see also [9, 10]). Let (X, k0) and (Y, k1) be spaces in Zn0

and Zn1 , respectively. A function f : X → Y is (k0, k1)-continuous if and only
if for every x0 ∈ X, ε ∈ N, and Nk1(f(x0), ε) ⊂ Y , there is δ ∈ N such that the
corresponding Nk0(x0, δ) ⊂ X satisfies f(Nk0(x0, δ)) ⊂ Nk1(f(x0), ε).

The current (k0, k1)-continuity is a generalization of the digital continuities
of [2, 20] without any limitation of the k-adjaceny relations of Zn and has been
often used in studying digital covering theory [7, 11, 13], digital k-curve, and
digital k-surface theory [10, 14]. Furthermore, this digital continuity has the
almost pasting property [16].

By the use of the (k0, k1)-continuity of Proposition 2.2, we obtain the digital
topological category [11], briefly DTC, consisting of two things:

(1) A class of objects (X, k) in Zn;
(2) For every ordered pair of objects (X, k0) in Zn0 and (Y, k1) in Zn1 , all

(k0, k1)-continuous maps f : (X, k0) → (Y, k1) as morphisms.

Theorem 2.3 ([6], see also [13]). Let (X, k0) and (Y, k1) be spaces in Zn0 and
Zn1 , respectively. For a (k0, k1)-continuous function f : X → Y of Proposi-
tion 2.2, we may take ε = 1 = δ.

For a k-adjacency relation of Zn, we recall that a simple closed k-curve with l
elements in X ⊂ Zn is the image of a (2, k)-continuous function f : [0, l−1]Z →
X such that f(i) and f(j) are k-adjacent if and only if either j = i+1 (mod l)
or i = j + 1 (mod l) [17]. Thus, we may use the notation SCn,l

k which can be
assumed to be a sequence (ci)i∈[0,l−1]Z with f(i) = ci [7].

A space (X, k) in Zn can be considered as a digital graph Gk [8] (see also
[6, 13]). To be specific, the vertex set of Gk can be recognized to be the set of
points of X. Besides, two points x1, x2 ∈ X determine a k-edge of Gk if and
only if x1 and x2 are k-adjacent in X [8] (see also [10, 13]). Thus, digital graph
versions of the (k0, k1)-continuity, the (k0, k1)-homeomorphism, the (k0, k1)-
covering, and the (k0, k1)-homotopy in digital topology were established in [8].

Definition 2 ([2], see also [8, 10, 13]). For two spaces (X, k0) in Zn0 and
(Y, k1) in Zn1 , a map h : X → Y is called a (k0, k1)-isomorphism if h is a
(k0, k1)-continuous bijection and further, h−1 : Y → X is (k1, k0)-continuous.
Then, we use the notation X ≈(k0,k1) Y . If n0 = n1 and k0 = k1, then we call
it a k0-isomorphism and use the notation X ≈k0 Y .

Khalimsky line topology on Z [3, 18] is induced from the subbasis

{[2n− 1, 2n + 1]Z : n ∈ Z}.
The family

{{2n + 1} : n ∈ Z} ∪ {[2n− 1, 2n + 1]Z : n ∈ Z}
is a basis for Khalimsky line topology on Z. We denote this topology T . It
follows easily that an even point is closed and an odd point is open. Indeed, we
have that the smallest open neighborhood is {n} if n is odd and {n−1, n, n+1}
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if n is even [3, 18, 21]. Now, we consider the product topology on Zn, denoted
by Tn, derived from the Khalimsky line topology on Z.

The topology Tn on Zn is called the Khalimsky topology on Zn, n ≥ 2, and
the corresponding topological space is denoted by (Zn, Tn). Also, by some
authors, this space is called the Khalimsky n-space. In this space, points with
all coordinates even are closed and points with all coordinates odd are open
[3, 15]. The other points in Zn are called mixed points. In Figures 1, 2, 3,
and 4, the symbols ¥ and • mean a pure closed point and a mixed point,
respectively. Besides, a jumbo dot stands for a pure open point.

Definition 3 ([12]). Let X be a set in Zn. We consider the subspace induced
from (Zn, Tn) and denote the corresponding topological space as (X, Tn

X). Fur-
thermore, considering the topological space (X, Tn

X) with k-adjacency, we call
it a computer topological space with k-adjacency and we briefly use the notation
(X, k, Tn

X) := Xn,k.

For two spaces (X, k0) and (Y, k1), and a map f : (X, k0) → (Y, k1), the
preservation of the k0-connectivity into the k1-connectivity is helpful to study
digital topology. Meanwhile, we observe that Khalimsky continuity of two
Khalimsky topological spaces Xn0,k0 and Yn1,k1 , denoted by f : Xn0,k0 →
Yn1,k1 , need not satisfy the requirement [12] (see Example 2.4).

Example 2.4 (Limitation of Khalimsky continuity). Consider a map f :
X2,8 → Y1,2 in Figure 1. Now, let X = {x0 = (2, 1), x1 = (1, 2), x2 =
(0, 3), x3 = (1, 4), x4 = (2, 4), x5 = (2, 5)} and Y = {1, 2, 3}. We consider
the map f : X2,8 → Y1,2 for which f({x1, x2}) = {1}, f(x0) = 3, and
f({x3, x4, x5}) = {2}. While f is a Khalimsky continuous map, f cannot
preserve the 8-connectivity into the 2-connectivity (see the point x0).
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Figure 1. Non-preservation of the 8-connectivity of Khalim-
sky continuity

In view of Example 2.4, we need to establish a new continuity for the study
of Khalimsky spaces. As referred above, since a Khalimsky continuous map f :
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Xn0,k0 → Yn1,k1 need not preserve the k0-connectivity into the k1-connectivity,
we need to establish another continuity which is Khalimsky continuous and
preserves the k0-connectivity into the k1-connectivity, as follows.

Definition 4 ([12]). Let Xn0,k0 and Yn1,k1 be two computer topological spaces
with ki-adjacency, i ∈ {0, 1}, and x ∈ X. A map f : X → Y is called Khalimsky
(k0, k1)-continuous (briefly, KD-(k0, k1)-continuous) at a point x if

(1) f is Khalimsky (topologically) continuous at the point x and
(2) for Nk1(f(x), 1) ⊂ Y , there is Nk0(x, 1) ⊂ X such that f(Nk0(x, 1)) ⊂

Nk1(f(x), 1).
Also, a map f : X → Y is called KD-(k0, k1)-continuous if the map f is

KD-(k0, k1)-continuous at every point x ∈ X. In addition, if n0 = n1 and
k0 = k1, then f : X → Y is called KD-k0-continuous.

We can see that none of the conditions (1) and (2) of Definition 4 implies
the other [12], as follows.

Remark 2.5. We now show that the condition (2) of Definition 4 does not hold
the condition (1). Let X = {(1, 1), (1, 2), (1, 3), (2, 2), (2, 3), (3, 3), (3, 1), (3, 2)}
and Y = {0, 1, 2}. We consider a map f : X2,4 → Y1,2 (see Figure 2)
for which f({(1, 1), (1, 2)}) = {0}, f({(1, 3), (2, 3), (3, 3), (2, 2)}) = {1}, and
f({(3, 2), (3, 1)}) = {2}. While the map f satisfies the condition (2) of Defini-
tion 4 at the point (2, 2), f cannot be Khalimsky continuous at the point (2, 2).
To be specific, for an open set {1} of 1, since the smallest open set containing
the pure closed point (2, 2) is the total set X ∈ T 2

X , we observe f(X) * {1}.
Next, consider the map f in Example 2.4 (see Figure 1). While the map f

satisfies the condition (1) of Definition 4, f cannot satisfy the condition (2) at
the points x0 and x1 of X (see Figure 1).
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Figure 2. Non-existence of the Khalimsky continuity

We now have a new topological category so called a KD-computer topological
category, briefly KDTC [12], consisting of three things:

(1) A class of objects Xn,k;
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(2) For every ordered pair of objects Xn0,k0 and Yn1,k1 as morphisms, all
KD-(k0, k1)-continuous maps f : Xn0,k0 → Yn1,k1 ;

(3) For every ordered triple of objects Xn0,k0 , Yn1,k1 , and Zn2,k2 and a
function associating to a pair of morphisms f : Xn0,k0 → Yn1,k1 which is a
KD-(k0, k1)-continuous map and g : Yn1,k1 → Zn2,k2 which is a KD-(k1, k2)-
continuous map, their composite g◦f : Xn0,k0 → Zn2,k2 which is a KD-(k0, k2)-
continuous map.

3. On GKD-(k0, k1)-continuous functions

In general, on the set Z we can consider many topologies. For instance, we
can consider the Scott topology and the upper topology on Z [4].

Example 3.1. (1) Let z ∈ Z and ↓ z = {x ∈ Z, x ≤ z}. The family consisting
of Z and the set {Z− ↓ z, z ∈ Z} defines a topology on Z, denoted here by τup,
which coincides with the Scott topology on Z.

Furthermore, we can consider the product topology τn
up on Zn derived from

the topology τup.
(2) Let z ∈ Z and ↑ z = {x ∈ Z, z ≤ x}. The family consisting of Z and the

set {Z− ↑ z, z ∈ Z} defines a topology on Z, denoted by τlo, which is called
lower topology.

Also, we can consider the product topology τn
lo on Zn derived from the

topology τlo.

As a generalization of the computer topological space in Definition 3, we
obtain the following.

Definition 5. Let τ be an arbitrary topology on Z and let (X, k) be a space
in Zn. We consider the subspace induced from (Zn, τn), denoted by (X, τn

X).
Furthermore, considering the topological space (X, τn

X) with k-adjacency, we
call it a generalized computer topological space with k-adjacency and we use the
notation (X, k, τn

X).
If τ is the Khalimsky line topology T , then the notion of generalized com-

puter topological space with k-adjacency coincides with that of computer topo-
logical space with k-adjacency.

Besides, the space (X, k, τn
X) in Definition 5 will be often called briefly a

generalized computer topological space if not confused.

Definition 6. Let (X, k0, τ
n0
X ) and (Y, k1, τ

n1
Y ) be two generalized computer

topological spaces and x0 ∈ X. A function f : X → Y is called GKD-(k0, k1)-
continuous at the point x0 if

(1) f is topologically continuous at the point x0 and
(2) for any Nk1(f(x0), 1) ⊂ Y , there is Nk0(x0, 1) ⊂ X such that

f(Nk0(x0, 1)) ⊂ Nk1(f(x0), 1).
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Also, we say that the map f : X → Y is GKD-(k0, k1)-continuous if the map
f is GKD-(k0, k1)-continuous at every point x ∈ X. In addition, if n0 = n1

and k0 = k1, then f : X → Y is called GKD-k0-continuous.
If τ is the Khalimsky line topology T , then the notion of GKD-(k0, k1)-

continuity coincides with the notion of KD-(k0, k1)-continuity.

Example 3.2. Consider two spaces X := {xi}i∈[1,10]Z with X2,8 and Y :=
{yj}j∈[1,6]Z with Y2,8 (see Figure 3). Then consider the map f : X → Y for
which
f(x1) = y1, f({x2, x3, x4}) = {y2}, f({x5, x6}) = {y3}, f(x7) = y4, f(x8) = y5,
and f({x9, x10}) = {y6}.
Then the map f is a GKD-8-continuous map.
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Figure 3. GKD-(8, 8)-continuity

Theorem 3.3. Let (X, k0, τ
n1
X ), (Y, k1, τ

n2
Y ), and (Z, k2, τ

n3
Z ) be three gener-

alized computer topological spaces. If the map f1 : X → Y is GKD-(k0, k1)-
continuous and the map f2 : Y → Z is GKD-(k1, k2)-continuous, then the
composition f2 ◦ f1 : X → Z is GKD-(k0, k2)-continuous.

Proof. First, the map f2 ◦ f1 is obviously continuous.
Second, it suffices to prove that for every x ∈ X and for every Nk2((f2 ◦

f1)(x), 1), there exists Nk0(x, 1) such that

(f2 ◦ f1)(Nk0(x, 1)) ⊂ Nk2((f2 ◦ f1)(x), 1).

Since the map f2 : Y → Z is GKD-(k1, k2)-continuous for any y ∈ Y , we have

f2(Nk1(y, 1)) ⊂ Nk2((f2(y), 1).

Also, since the map f1 : X → Y is GKD-(k0, k1)-continuous, we obtain

f1(Nk0(x, 1)) ⊂ Nk1(f1(x), 1).
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Thus,

(f2 ◦ f1)(Nk0(x, 1)) ⊂ f2(Nk1(f1(x), 1)) ⊆ Nk2((f2 ◦ f1)(x), 1),

which completes the proof. ¤

We obviously obtain the following.

Theorem 3.4. Let (X, k, τn
X) be a generalized computer topological space.

Then, the map id : X → X for which id(x) = x is GKD-(k, k)-continuous.

Let us now study a normally compatible k-adjacency of a Cartesian product
(or a digital product). For two spaces (X, k1) in Zn1 , (Y, k2) in Zn2 , the product
space X × Y in Zn1+n2 can be considered with an N-compatible k-adjacency
of Zn1+n2 related to the k1-and k2-adjacencies. Indeed, the establishment of
the N-compatible adjacency plays an important role in studying a computer
topological product space in relation with the study of a computer topological
function space.

Definition 7. For two spaces (X, k1) in Zn1 , (Y, k2) in Zn2 , consider the digital
product X × Y := {(x, y)|x ∈ X, y ∈ Y } ⊂ Zn1+n2 . Then a k-adjacency of two
points (x, y) ∈ X × Y , (x′, y′) ∈ X × Y is called normally compatible (briefly,
N-compatible) with the ki-adjacency, i ∈ {1, 2}, if

(1) whenever y = y′ and (x, y) is k-adjacent to (x′, y′), then x is k1-adjacent
to x′;

(2) whenever x = x′ and (x, y) is k-adjacent to (x′, y′), then y is k2-adjacent
to y′; and

(3) whenever x 6= x′ and y 6= y′, and (x, y) is k-adjacent to (x′, y′), then x
is k1-adjacent to x′ and y is k2-adjacent to y′.

The current N-compatible k-adjacency is different from the adjacency of the
normal product in [1]. The following simple closed 4- and 8-curves in Z2 in
[6, 9, 13] and a simple closed 18- and 26-curves in Z3 will be often used later
in this paper [14].





SC2,8
4 ≈4 ((0, 0), (0, 1), (0, 2), (1, 2), (2, 2), (2, 1), (2, 0), (1, 0)),

SC2,4
8 := MSC ′8 ≈8 ((0, 0), (1, 1), (2, 0), (1,−1)),

SC2,6
8 := MSC8 ≈8 ((0, 0), (1, 1), (1, 2), (0, 3), (−1, 2), (−1, 1)),

SC2,8
8 := ((0, 0), (1, 1), (2, 2), (1, 3), (0, 4), (−1, 3), (−2, 2), (−1, 1)),

MSC18 := ((0, 0, 0), (1,−1, 0), (1,−1, 1), (2, 0, 1), (1, 1, 1), (1, 1, 0)),

SC3,6
18 := ((0, 0, 0), (1, 0, 1), (1, 1, 2), (0, 2, 2), (−1, 1, 2), (−1, 0, 1))





.

Example 3.5. For two spaces (X, 2) and (Y, 2) in Z, the Cartesian product
X × Y can be assumed on Z2 with an N-compatible 8-adjacency. Besides, we
obtain the following.

(a) (SC2,6
8 × [a, b]Z, 26),
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Figure 4. Various simple closed k-curves in [6, 9, 13, 14]

(b) (SC2,6
8 × SC2,6

8 , 80),
(c) (SC3,6

18 × SC2,4
8 , k), k ∈ {210, 242}, and

(d) No N-compatible k-adjacency of SC2,8
4 × SC2,6

8 exists.

Proof. (a), (b), and (c) are obviously proved.
(d) Let us examine some N-compatible k-adjacency of SC2,8

4 × SC2,6
8 ⊂ Z4.

First, suppose an N-compatible k-adjacency of SC2,8
4 × SC2,6

8 . By Defini-
tion 7(3), we can assume an N-compatible k-adjacency of SC2,8

4 × SC2,6
8 , k ∈

{64, 80}. Then the k-adjacency contradicts to (1) and (2) of Definition 7.
Second, if we assume the k-adjacency of SC2,8

4 × SC2,6
8 , k ∈ {8, 32}, then it

cannot satisfy Definition 7(3). ¤

In view of Example 3.5, we observe that for a space (Xi, ki) the existence of
an N-compatible k-adjacency of the digital product X1 × X2 depends on the
situation. Furthermore, the N-compatible k-adjacency of Definition 7 obviously
implies the following.

Theorem 3.6. Let (X, k1, τ
n1
X ) and (Y, k2, τ

n2
Y ) be two generalized computer

topological spaces such that the product spaces (X×Y, k, τn1+n2
X×Y ) is well defined

with N-compatible k-adjacency. Then, each projection map pi : X ×Y → X or
Y is a GKD-(k, ki)-continuous map, i ∈ {1, 2}.
Theorem 3.7. Let (X, k1, τ

n1
X ), (Y, k2, τ

n2
Y ), and (Z, k3, τ

n3
Z ) be three gen-

eralized computer topological spaces. Assume that the product spaces (X ×
Z, k, τn1+n3

X×Z ) and (Y × Z, k′, τn2+n3
Y×Z ) are well defined with N-compatible k-
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and k′-adjacencies, respectively. If the map f : X → Y is a GKD-(k1, k2)-
continuous map, then the map f × id : X × Z → Y × Z is GKD-(k, k′)-
continuous, where id : Z → Z is the identity map.

Proof. Obviously, the map f × id is continuous.
Now, for (x, z) ∈ X × Z, let

Nk′((f × id)(x, z), 1) = Nk′((f(x), z), 1) ⊆ Y × Z.

Let us now show

(3.1) (f × id)(Nk((x, z), 1)) ⊆ Nk′((f(x), z), 1).

Indeed, since the map f : X → Y is GKD-(k1, k2)-continuous for Nk1(f(x), 1)
⊆ Y , there exists Nk1(x, 1) ⊆ X such that

f(Nk1(x, 1)) ⊆ Nk2(f(x), 1).

Also, since the map id : Z → Z is GKD-k3-continuous for Nk3(z, 1) ⊆ Z, we
obtain:

id(Nk3(z, 1)) ⊆ Nk3(z, 1).
Let us now prove that the relation (3.1) is true. Let (x′, z′) ∈ Nk((x, z), 1).

Then, by Definition 7, we have that x′ ∈ Nk1(x, 1) and z′ ∈ Nk3(z, 1). Thus
we have:

f(x′) ∈ Nk2(f(x), 1)
and

id(z′) = z′ ∈ Nk3(z, 1).
Therefore, we have:

(f × id)(x′, z′) = (f(x′), z′) ∈ Nk′((f(x), z), 1),

which completes the proof. ¤

Theorem 3.8. Let (X, k1, τ
n1
X ), (Y, k2, τ

n2
Y ), and (Z, k3, τ

n3
Z ) be three gen-

eralized computer topological spaces. Assume that the product space (X ×
Y, k, τn1+n2

X×Y ) is well defined with an N-compatible k-adjacency. If a map F :
X × Y → Z is GKD-(k, k3)-continuous and x ∈ X, then the map Fx : Y → Z
for which Fx(y) = F (x, y) for every y ∈ Y is GKD-(k2, k3)-continuous.

Proof. Obviously, the map Fx : Y → Z is continuous.
Now, let y ∈ Y and let Nk3(Fx(y), 1) ⊆ Z. Then we prove

(3.2) Fx(Nk2(y, 1)) ⊆ Nk3(Fx(y), 1).

Indeed, since the map F : X × Y → Z is GKD-(k, k3)-continuous and Fx(y) =
F (x, y) for Nk3(F (x, y), 1) ⊆ Z, there exists Nk((x, y), 1) ⊆ X × Y such that

F (Nk((x, y), 1)) ⊆ Nk3(F (x, y), 1).

We suffice to prove that

Fx(Nk2(y, 1)) ⊂ Nk3(Fx(y), 1).
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Indeed, let y′ ∈ Nk2(y, 1), then by Definition 7 we have (x, y′) ∈ Nk((x, y), 1)
and, therefore,

Fx(y′) = F (x, y′) ∈ Nk3(F (x, y), 1),
which completes the proof. ¤

4. Topologies on the GKD-(k0, k1)-continuous function space

In order to investigate some topologies of a computer topological function
space, we need the following.
Notation 1. Let (Y, k2, τ

n2
Y ) and (Z, k3, τ

n3
Z ) be two generalized computer

topological spaces. By C(Y, Z) we denote the set of all GKD-(k2, k3)-continuous
functions from Y into Z. Let f ∈ C(Y,Z). We can assume that
(4.1)
f = {((p1, . . . , pn2), (q1, . . . , qn3)) : f(p1, . . . , pn2) = (q1, . . . , qn3), (p1, . . . , pn2) ∈ Y }.

By the relation (4.1), if we assume

((p1, . . . , pn2), (q1, . . . , qn3)) ≡ (p1, . . . , pn2 , q1, . . . , qn3),

then we can consider each map f ∈ C(Y, Z) as a subset of Zn2+n3 .
In what follows by

C 〈Y,Z〉
we denote the set ⋃

{f : f ∈ C(Y, Z)}.
Clearly, C 〈Y, Z〉 ⊆ Zn2+n3 . Also, we consider the space (C 〈Y, Z〉 , k′), where
k′ := k′(m,n) =

∑n−1
i=n−m 2n−iCn

i in Proposition 2.1 and n = n2 + n3.

Example 4.1. Assume that Y = {1} ⊆ Z and Z = {3, 4} ⊆ Z. We consider
the spaces (Y, 2) and (Z, 2) with the Khalimsky topologies TY and TZ , respec-
tively. In this case, C(Y,Z) = {f, g}, where f = {(1, 3)} and g = {(1, 4)}.
Clearly, C 〈Y, Z〉 = {(1, 3), (1, 4)} ⊆ Z2. So, we can consider the computer
topological spaces (C 〈Y, Z〉 , 4, T 2

C〈Y,Z〉) and (C 〈Y, Z〉 , 8, T 2
C〈Y,Z〉).

Notation 2. Let (X, k1, τ
n1
X ), (Y, k2, τ

n2
Y ), and (Z, k3, τ

n3
Z ) be three generalized

computer topological spaces such that the product X×Y is well defined with an
N-compatible k-adjacency and let F : X×Y → Z be a GKD-(k, k3)-continuous
map.

For every x ∈ X, by Fx we denote the GKD-(k2, k3)-continuous map (see
Theorem 3.8) from Y into Z, for which Fx(y) = F (x, y), y ∈ Y , and by F̂

we denote the map of X into the set C 〈Y,Z〉, for which F̂ (x) = Fx for every
x ∈ X.

Also, if G is a map from X into C 〈Y,Z〉, then by G̃ we denote the map of
X × Y into Z, for which G̃(x, y) = G(x)(y) for every (x, y) ∈ X × Y .

Hereafter, we assume the following. Let (Y, k2, τ
n2
Y ) and (Z, k3, τ

n3
Z ) be two

generalized computer topological spaces and let A be the family of all gen-
eralized computer topological spaces (X, k1, τ

n1
X ) such that the product space
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(X × Y, k, τn1+n2
X×Y ) is well defined with an N-compatible k-adjacency. Con-

sider the space (C 〈Y, Z〉 , k′) defined with an N-compatible k′-adjacency as in
Notation 1.

Definition 8. A topology t on (C 〈Y,Z〉 , k′) is called A-splitting if for every
(X, k1, τ

n1
X ) ∈ A, GKD-(k, k3)-continuity of a map F : X × Y → Z implies

GKD-(k1, k
′)-continuity of the map

F̂ : (X, k1, τ
n1
X ) → (C 〈Y,Z〉 , k′, t).

A topology t on (C 〈Y, Z〉 , k′) is called A-admissible if for every space (X,
k1, τn1

X ) ∈ A, GKD-(k1, k
′)-continuity of a map

G : (X, k1, τ
n1
X ) → (C 〈Y, Z〉 , k′, t)

implies GKD-(k, k3)-continuity of the map

G̃ : (X × Y, k, τn1+n2
X×Y ) → (Z, k3, τ

n3
Z ).

Theorem 4.2. Let (Y, k2, τ
n2
Y ) and (Z, k3, τ

n3
Z ) be two generalized computer

topological spaces and let A be a family of all generalized computer topological
spaces such that the product Y × Z is well defined with an N-compatible k′-
adjacency. Besides, let (C 〈Y,Z〉 , k′) be the space defined with an N-compatible
k′-adjacency as in Notation 1. If a topology t on (C 〈Y, Z〉 , k′) is A-splitting
and t′ is a topology such that t′ ⊂ t, then t′ is also A-splitting.

Proof. Let (X, k1, τ
n1
X ) ∈ A and let F : X × Y → Z be a GKD-(k, k3)-

continuous map. Since the topology t is an A-splitting, the map

F̂ : (X, k1, τ
n1
X ) → (C 〈Y, Z〉 , k′, t)

is GKD-(k1, k
′)-continuous. Now, since for the topology t′ satisfying t′ ⊂ t, the

map
id : (C 〈Y, Z〉 , k′, t) → (C 〈Y, Z〉 , k′, t′)

is also a GKD-k′-continuous map. Thus, by Theorem 3.3, the map

id ◦ F̂ : (X, k1, τ
n1
X ) → (C 〈Y, Z〉 , k′, t′)

is also GKD-(k1, k
′)-continuous and, therefore, the topology t′ is A-split

ting. ¤

Let us recall the following. If ti is topology on a set X, then in general the
family ∪{ti : i ∈ I} need not be a topology on X. By the symbol ∨{ti : i ∈ I}
we denote the topology on X for which the family ∪{ti : i ∈ I} is a subbase.

Theorem 4.3. Let (Y, k2, τ
n2
Y ) and (Z, k3, τ

n3
Z ) be two generalized computer

topological spaces and let A be the family of all generalized computer topological
spaces (X, k1, τ

n1
X ) such that the product X × Y is well defined with an N-

compatible k-adjacency. On the space (C 〈Y, Z〉 , k′) there exists the greatest
A-splitting topology denoted by tgs(A). Therefore,

tgs(A) = ∨{t : t is A-splitting}.
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Proof. We observe that for everyA-splitting topology t we have that t ⊆ tgs(A).
So, for the proof of this theorem it suffices to prove that the topology

tgs(A) = ∨{t : t is A-splitting}
is A-splitting.

Let (X, k1, τ
n1
X ) ∈ A and let F : X × Y → Z be a GKD-(k, k3)-continuous

map. We need to prove that the map

F̂ : (X, k1, τ
n1
X ) → (C 〈Y, Z〉 , k′, tgs(A))

is GKD-(k1, k
′)-continuous.

Let t be an A-splitting topology. Then, t ⊆ tgs(A) and, therefore, the map

F̂ : (X, k1, τ
n1
X ) → (C 〈Y, Z〉 , k′, t)

is a GKD-(k1, k
′)-continuous map.

Thus, for every point x0 ∈ X and for every Nk′(F̂ (x0),1)
⊂ C 〈Y,Z〉, there is

Nk1(x0, 1) ⊂ X such that

F̂ (Nk1(x0, 1)) ⊂ Nk′(F̂ (x0), 1).

So, it suffices to prove that the map

F̂ : (X, k1, τ
n1
X ) → (C 〈Y, Z〉 , k′, tgs(A))

is topologically continuous. Let U ∈ tgs(A). Then, we obtain

U =
⋃
{Ui1 ∩ · · · ∩ Uik(i) : i ∈ I},

where each set Uim is an open set in the A-splitting topology tim . Since for
every i ∈ I, each of topologies ti1 , . . . , tik(i) is A-splitting, each map

F̂ : (X, k1, τ
n1
X ) → (C 〈Y, Z〉 , k′, tim),

is topologically continuous, where tim ∈ {ti1 , . . . , tik(i)}.
Thus, the sets F̂−1(Uim) ∈ τn1

X and, therefore,

F̂−1(Ui1 ∩ · · · ∩ Uik(i)) = F̂−1(Ui1) ∩ · · · ∩ F̂−1(Uik(i)) ∈ τn1
X .

Since
U =

⋃
{Ui1 ∩ · · · ∩ Uik(i) : i ∈ I}

and
F̂−1(U) = F̂−1(∪{Ui1 ∩ · · · ∩ Uik(i) : i ∈ I})

=
⋃
{F̂−1(Ui1) ∩ · · · ∩ F̂−1(Uik(i)) : i ∈ I},

we obtain
F̂−1(U) ∈ τn1

X .

Thus the map
F̂ : (X, k1, τ

n1
X ) → (C 〈Y, Z〉 , k′, tgs(A))

is topologically continuous, which completes the proof. ¤
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Theorem 4.4. Let (Y, k2, τ
n2
Y ) and (Z, k3, τ

n3
Z ) be two generalized computer

topological spaces and let A be the family of all generalized computer topological
spaces (X, k1, τ

n1
X ) such that the product X × Y is well defined with an N-

compatible k-adjacency. If a topology t on (C 〈Y,Z〉 , k′) is A-admissible and t′

is a topology such that t ⊂ t′, then t′ is also A-admissible.

Proof. Let (X, k1, τ
n1
X ) ∈ A and let

G : (X, k1, τ
n1
X ) → (C 〈Y, Z〉 , k′, t′)

be GKD-(k, k3)-continuous. We must prove that the map

G̃ : (X × Y, k, τn1+n2
X×Y ) → (Z, k3, τ

n3
Z )

is GKD-(k, k3)-continuous.
Indeed, since t ⊆ t′, the map

G : (X, τn1
X ) → (C 〈Y, Z〉 , t)

is topologically continuous. Also, since the map G : (X, k1, τ
n1
X ) → (C 〈Y,Z〉,

k′, t′) is GKD-(k, k3)-continuous, the map

G : (X, k1, τ
n1
X ) → (C 〈Y, Z〉 , k′, t)

is also GKD-(k1, k
′)-continuous.

Now, since the topology t is A-admissible, the map

G̃ : (X × Y, k, τn1+n2
X×Y ) → (Z, k3, τ

n3
Z )

is GKD-(k, k3)-continuous. By this fact we have that the topology t′ is A-
admissible. ¤

Theorem 4.5. Let (Y, k2, τ
n2
Y ) and (Z, k3, τ

n3
Z ) be two generalized computer

topological spaces and let A be the family of all generalized computer topological
spaces (X, k1, τ

n1
X ) such that the product X × Y is well defined with an N-

compatible k-adjacency. If a topology t is A-splitting and t′ is an A-admissible
topology on (C 〈Y,Z〉 , k′) such that (C 〈Y, Z〉 , k′, t′) ∈ A, then t ⊆ t′.

Proof. We observe that the map

G := 1C〈Y,Z〉 : (C 〈Y, Z〉 , k′, t′) → (C 〈Y, Z〉 , k′, t′)
is GKD-k′-continuous.

Also, since the topology (C 〈Y,Z〉 , k′, t′) ∈ A, we have that the product
C 〈Y, Z〉×Y is well defined with an N -compatible k-adjacency. Now, since the
topology t′ is A-admissible, the map

G̃ ≡ F : (C 〈Y,Z〉 , k′, t′)× (Y, k2, τ
n2
Y ) → (Z, k3, τ

n3
Z )

is GKD-(k, k3)-continuous.
Finally, since the topology t is A-splitting, the map

F̂ : (C 〈Y,Z〉 , k′, t′) → (C 〈Y, Z〉 , k′, t)



856 SANG-EON HAN AND D. N. GEORGIOU

is GKD-k′-continuous. By this fact we have that the map

F̂ : (C 〈Y,Z〉 , t′) → (C 〈Y, Z〉 , t)
is topologically continuous. Also, we observe that F̂ = id. Thus, t ⊆ t′. ¤

5. Concluding remarks

We give and study the notion of GKD-(k0, k1)-continuous function between
(generalized) computer topological spaces with ki-adjacency, i ∈ {0, 1}. This
study is an application on function spaces. Let us now adopt a forgetful functor
from KDTC into DTC, denoted by

F ∗ : KDTC → DTC .

Then, the forgetful functor F ∗ transforms a computer topological space Xn,k

into a discrete topological space (or digital image) with k-adjacency (X, k)
[5, 6, 9, 10, 13]. Furthermore, the current KD-(k0, k1)-continuity is also trans-
formed into the digital (k0, k1)-continuity in DTC. Thus we can study various
properties of a digital function space in DTC.
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