• 제목/요약/키워드: computer tomography

검색결과 421건 처리시간 0.043초

Nonlinearity-Compensation Extended Kalman Filter for Handling Unexpected Measurement Uncertainty in Process Tomography

  • Kim, Jeong-Hoon;Ijaz, Umer Zeeshan;Kim, Bong-Seok;Kim, Min-Chan;Kim, Sin;Kim, Kyung-Youn
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 2005년도 ICCAS
    • /
    • pp.1897-1902
    • /
    • 2005
  • The objective of this paper is to estimate the concentration distribution in flow field inside the pipeline based on electrical impedance tomography. Special emphasis is given to the development of dynamic imaging technique for two-phase field undergoing a rapid transient change. Nonlinearity-compensation extended Kalman filter is employed to cope with unexpected measurement uncertainty. The nonlinearity-compensation extended Kalman filter compensates for the influence of measurement uncertainty and solves the instability of extended Kalman filter. Extensive computer simulations are carried out to show that nonlinearity-compensation extended Kalman filter has enhanced estimation performance especially in the unexpected measurement environment.

  • PDF

MAGNETIC RESONANCE ELECTRICAL IMPEDANCE TOMOGRAPHY

  • Kwon, Oh-In;Seo, Jin-Keun;Woo, Eung-Je;Yoon, Jeong-Rock
    • 대한수학회논문집
    • /
    • 제16권3호
    • /
    • pp.519-541
    • /
    • 2001
  • Magnetic Resonance Electrical Impedance Tomography(MREIT) is a new medical imaging technique for the cross-sectional conductivity distribution of a human body using both EIT(Electrical Impedance Tomography) and MRI(Magnetic Resonance Imaging) system. MREIT system was designed to enhance EIT imaging system which has inherent low sensitivity of boundary measurements to any changes of internal tissue conductivity values. MREIT utilizes a recent CDI (Current Density Imaging) technique of measuring the internal current density by means of MRI technique. In this paper, a mathematical modeling for MREIT and image reconstruction method called the alternating J-substitution algorithm are presented. Computer simulations show that the alternating J-substitution algorithm provides accurate high-resolution conductivity images.

  • PDF

Optical Coherence Tomography Based on a Continuous-wave Supercontinuum Seeded by Erbium-doped Fiber's Amplified Spontaneous Emission

  • Lee, Ju-Han;Jung, Eun-Joo;Kim, Chang-Seok
    • Journal of the Optical Society of Korea
    • /
    • 제14권1호
    • /
    • pp.49-54
    • /
    • 2010
  • In this study, the use of a continuous-wave (CW) supercontinuum (SC) seeded by an erbium-doped fiber's amplified spontaneous emission (ASE) for optical-coherence tomography imaging is experimentally demonstrated. It was shown, by taking an in-depth image of a human tooth sample, that due to the smooth, flat spectrum and long-term stability of the proposed CW SC, it can be readily applied to the spectral-domain optical-coherence tomography system. The relative-intensity noise level and spectral bandwidth of the CW SC are also experimentally analyzed as a function of the ASE beam power.

Implementation of Cost-effective Common Path Spectral Domain Free-hand Scanning OCT System

  • Shoujing Guo;Xuan Liu;Jin U. Kang
    • Current Optics and Photonics
    • /
    • 제7권2호
    • /
    • pp.176-182
    • /
    • 2023
  • Optical coherence tomography (OCT) is being developed to guide various ophthalmic surgical procedures. However, the high cost of the intraoperative OCT system limits its availability mostly to the largest hospitals and healthcare systems. In this paper, we present a design and evaluation of a low-cost intraoperative common-path free-hand scanning OCT system. The lensed fiber imaging probe is designed and fabricated for intraocular use and the free-hand scanning algorithm that could operate at a low scanning speed was developed. Since the system operates at low frequencies, the cost of the overall system is significantly lower than other commercial intraoperative OCT systems. The assembled system is characterized and shows that it meets the design specifications. The handheld OCT imaging probe is tested on multilayer tape phantom and ex-vivo porcine eyes. The results show that the system could be used as an intraoperative intraocular OCT imaging device.

실시간 광단층 모니터링 안구 수술용 현미경 프로브 개발 (Development of The Intraoperative Surgical Optical Coherence Tomography Probe)

  • 김경운;이창호;정효상;한승훈;김홍균;김지현
    • 대한의용생체공학회:의공학회지
    • /
    • 제33권2호
    • /
    • pp.53-58
    • /
    • 2012
  • Intraoperative surgical microscope is an essential surgical equipment. However, it has a restriction to classify the retina layers because of the contrast differences. To solve this problem, operators use surgical instrument such as an intraocular mirror. In this case, it has to amputate the patient's eye. In this study, we developed a probe the intraoperative surgical optical coherence tomography. We expect that the developed OCT probe can overcome the limit of OCT and be applied as a real-time surgical tool. In this paper, we demonstrate applicability of the probe through rabbit's experimentation.

Development of SD-OCT for Imaging the in vivo Human Tympanic Membrane

  • Cho, Nam-Hyun;Jung, Un-Sang;Kwon, Hyeong-Il;Jeong, Hyo-Sang;Kim, Jee-Hyun
    • Journal of the Optical Society of Korea
    • /
    • 제15권1호
    • /
    • pp.74-77
    • /
    • 2011
  • We report a novel extension of 840 nm wavelength- based spectral domain optical tomography to in vivo/real-time human middle ear diagnosis. The system was designed to access the middle ear region with a specifically dedicated handheld probe. The real-time displaying feature was mandatory for in vivo imaging human subject with the handheld probe, and the system could provide about 20 frames per second for 2048 pixels by 1000 A-scans without using any graphics process units under the Labview platform. The inner ear structure of a healthy male volunteer was imaged with the developed system with the axial and lateral resolutions of $15\;{\mu}m$ and $30\;{\mu}m$, respectively. The application of the OCT technology to early diagnose otitis media(OM) is very promising and could be another extensive branch in the OCT field because it provides the depth resolved image including tympanic membrane (TM) and structures below TM whereas the conventional otoscope technique only gives asurface image of the TM.

하악 무치악 부위의 임플란트 이식을 위한 전산화단층촬영 영상의 비교 평가 (Comparative evaluation of computed tomography for dental implants on the mandibular edentulous area)

  • 선경훈;정호걸;박혁;박창서;김기덕
    • Imaging Science in Dentistry
    • /
    • 제39권1호
    • /
    • pp.27-33
    • /
    • 2009
  • Purpose: The purpose of this study was to evaluate the clinical usefulness of the recently developed multi-detector computed tomography and cone beam computed tomography in pre-operative implant evaluation, by comparing them with the single detector computed tomography, already confirmed for accuracy in this area. Materials and Methods: Five partially edentulous dry human mandibles, with $1{\times}1mm$ gutta percha cones, placed in 5mm intervals posterior to the mental foramen on each side of the buccal part of the mandible, were used in this study. They were scanned as follows: 1) Single detector computed tomography: slice thickness 1mm, 200mA, 120kV 2) Multi-detector computed tomography: slice thickness 0.75mm, 250mA, 120kV 3) Cone beam computed tomography: 15mAs, 120kV Axial images acquired from three computed tomographies were transferred to personal computer, and then reformatted cross-sectional images were generated using V-Implant $2.0^{(R)}$ (CyberMed Inc., Seoul, Korea) software. Among the cross-sectional images of the gutta perch a cone, placed in the buccal body of the mandible, the most precise cross section was selected as the measuring point and the distance from the most superior border of the mandibular canal to the alveolar crest was measured and analyzed 10 times by a dentist. Results: There were no significant intraobserver differences in the distance from the most superior border of the mandibular canal to the alveolar crest (p>0.05). There were no significant differences among single detector computed tomography, multi-detector computed tomography and cone beam computed tomography in the distance from the most superior border of the mandibular canal to the alveolar crest (p>0.05). Conclusion: Multi-detector computed tomography and cone beam computed tomography are clinically useful in the evaluation of pre-operative site for mandibular dental implants, with consideration for radiation exposure dose and scanning time.

  • PDF