• Title/Summary/Keyword: computational reconstruction

Search Result 269, Processing Time 0.028 seconds

A fast decoding algorithm using data dependence in fractal image (프래탈 영상에서 데이타 의존성을 이용한 고속 복호화 알고리즘)

  • 류권열;정태일;강경원;권기룡;문광석
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.22 no.10
    • /
    • pp.2091-2101
    • /
    • 1997
  • Conventional method for fractal image decoding requires high-degree computational complexity in decoding propocess, because of iterated contractive transformations applied to whole range blocks. In this paper, we propose a fast decoding algorithm of fractal image using data depence in order to reduce computational complexity for iterated contractive transformations. Range of reconstruction image is divided into a region referenced with domain, called referenced range, and a region without reference to domain, called unreferenced range. The referenced range is converged with iterated contractive transformations, and the unreferenced range can be decoded by convergence of the referenced range. Thus the unreferenced range is called data dependence region. We show that the data dependence region can be deconded by one transformation when the referenced range is converged. Consequently, the proposed method reduces computational complexity in decoding process by executing iterated contractive transformations for the referenced range only.

  • PDF

Induction Parameter Modeling of Hydrocarbon Fuel/Oxidizer for Detonation Wave Analysis (데토네이션 파 해석을 위한 탄화수소 연료/산화제의 Induction Parameter Modeling)

  • Choi, Jeong-Yeol;Yang, Vigor
    • 한국연소학회:학술대회논문집
    • /
    • 2003.05a
    • /
    • pp.57-62
    • /
    • 2003
  • A general procedure of obtaining reliable one-step kinetics model for hydrocarbon mixture from the fully detailed chemistry is described iin this study. One-step theoretical formulation of the induction parameter model IPM uses a theoretical reconstruction of the induction time database obtained from a detailed kinetics library. Non-dimensional induction time calculations is compared with that of detailed kinetics. The IPM was latter implemented to fluid dynamics code and applied for the numerical simulation of detonation wave propagation. The numerical results including the numerical smoked-foil record show the all the details of the detonation wave propagation characteristics at the cost around 1/100 of the detailed kinetics calculation.

  • PDF

Accelerated Split Bregman Method for Image Compressive Sensing Recovery under Sparse Representation

  • Gao, Bin;Lan, Peng;Chen, Xiaoming;Zhang, Li;Sun, Fenggang
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.10 no.6
    • /
    • pp.2748-2766
    • /
    • 2016
  • Compared with traditional patch-based sparse representation, recent studies have concluded that group-based sparse representation (GSR) can simultaneously enforce the intrinsic local sparsity and nonlocal self-similarity of images within a unified framework. This article investigates an accelerated split Bregman method (SBM) that is based on GSR which exploits image compressive sensing (CS). The computational efficiency of accelerated SBM for the measurement matrix of a partial Fourier matrix can be further improved by the introduction of a fast Fourier transform (FFT) to derive the enhanced algorithm. In addition, we provide convergence analysis for the proposed method. Experimental results demonstrate that accelerated SBM is potentially faster than some existing image CS reconstruction methods.

VOLUME CAPTURING METHOD USING UNSTRUCTURED GRID SYSTEM FOR NUMERICAL ANALYSIS OF MULTIPHASE FLOWS (다상유동 해석을 위한 비정렬격자계를 사용한 체적포착법)

  • Myong, H.K.
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2009.11a
    • /
    • pp.201-210
    • /
    • 2009
  • A volume capturing method using unstructured grid system for numerical analysis of multiphase flows is introduced in the present paper. This method uses an interface capturing method (CICSAM) in a volume of fluid(VOF) scheme for phase interface capturing. The novelty of CICSAM lies in the adaptive combination of high resolution discretization scheme which ensures the preservation of the sharpness and shape of the interface while retaining boundedness of the field, and no explicit interface reconstruction which is perceived to be difficult to implement on unstructured grid system. Several typical test cases for multiphase flows are presented, which are simulated by an in-house solution code(PowerCFD). This code employs an unstructured cell-centered method based on a conservative pressure-based finite-volume method with CICSAM. It is found that the present method simulates efficiently and accurately complex free surface flows such as multiphase flows.

  • PDF

NUMERICAL SIMULATION OF THREE-DIMENSIONAL DENDRITIC GROWTH WITH FLUID CONVECTION (유체 유동을 동반한 수치상결정 미세구조의 3차원 성장에 대한 수치해석적 연구)

  • Yoon, Ik-Roh;Shin, Seung-Won
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2009.04a
    • /
    • pp.355-362
    • /
    • 2009
  • Most material of engineering interest undergoes solidification process from liquid to solid state. Identifying the underlying mechanism during solidification process is essential to determine the microstructure of material which governs the physical properties of final product. In this paper, we expand our previous two-dimensional numerical technique to three-dimensional simulation for computing dendritic solidification process with fluid convection. We used Level Contour Reconstruction Method to track the moving liquid-solid interface and Sharp Interface Technique to correctly implement phase changing boundary condition. Three-dimensional results showed clear difference compared to two-dimensional simulation on tip growth rate and velocity.

  • PDF

PERFORMANCE ANALYSES OF PATH RECOVERY ROUTING PROTOCOLS IN AD HOC NETWORKS

  • Wu, Mary;Kim, Chong-Gun
    • Journal of applied mathematics & informatics
    • /
    • v.26 no.1_2
    • /
    • pp.235-249
    • /
    • 2008
  • On-demand routing protocol in ad hoc network is that establishes a route to a destination node only when it is required by a source node. But, it is necessary to reestablish a new route when an active route breaks down. The reconstruction process establishes another route by flooding messages from the source to the destination, cause not only heavy traffic but also long delays in route discovery. A good method for analyzing performance of protocols is important for deriving better systems. In this paper, we suggest the numerical formulas of a representative on-demand routing protocol AODV, ARMP, and RRAODV to estimate the performance of these routing protocols for analyzing the performance of these protocols. The proposed analytical models are very simple and straightforward. The results of analysis show good agreement with the results of computer simulations.

  • PDF

AN ITERATIVE DISTRIBUTED SOURCE METHOD FOR THE DIVERGENCE OF SOURCE CURRENT IN EEG INVERSE PROBLEM

  • Choi, Jong-Ho;Lee, Chnag-Ock;Jung, Hyun-Kyo
    • Journal of the Korean Society for Industrial and Applied Mathematics
    • /
    • v.12 no.3
    • /
    • pp.191-199
    • /
    • 2008
  • This paper proposes a new method for the inverse problem of the three-dimensional reconstruction of the electrical activity of the brain from electroencephalography (EEG). Compared to conventional direct methods using additional parameters, the proposed approach solves the EEG inverse problem iteratively without any parameter. We describe the Lagrangian corresponding to the minimization problem and suggest the numerical inverse algorithm. The restriction of influence space and the lead field matrix reduce the computational cost in this approach. The reconstructed divergence of primary current converges to a reasonable distribution for three dimensional sphere head model.

  • PDF

A COMPARATIVE STUDY BETWEEN DISCONTINUOUS GALERKIN AND SPECTRAL VOLUME METHODS ON STRUCTURED GRIDS (2차원 정렬 격자계에서의 불연속 갤러킨 기법과 Spectral Volume 기법 비교 연구)

  • Koo H. S.;Kim K. H.;Kim C. A.
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2005.10a
    • /
    • pp.131-134
    • /
    • 2005
  • Conventional high order interpolation schemes are limitative in several aspects mainly because they need data of neighboring cells at the reconstruction step. However, discontinuous Galerkin method and spectral volume method, two high order flux schemes which will be analyzed and compared in this paper, have an important benefit that they are not necessary to determine the flow gradients from data of neighboring cells or elements. These two schemes construct polynomial of variables within a cell so that even near wall or discontinuity, the high order does not deteriorate.

  • PDF

Electrical Resistance Tomography: Mesh Grouping and Boundary Estimation Algorithms

  • Kim Sin;Cho Hyo-Sung;Lee Bong-Soo
    • International Journal of Contents
    • /
    • v.1 no.1
    • /
    • pp.1-5
    • /
    • 2005
  • This paper presents the development and application of electrical resistance imaging techniques for the visualization of two-phase flow fields. Two algorithms, the so-called the mesh grouping and the boundary estimation, are described for potential applications of electrical resistance tomography (ERT) and results from extensive numerical simulations are also presented. In the electrical resistance imaging for two-phase flows, numerical meshes fairly belonging to each phase can be grouped to improve the reconstruction performance. In many cases, the detection of phase boundary is a key subject and a mathematical model to estimate phase boundary can be formulated in a different manner. Our results indicated that the mesh grouping algorithm is effective to enhance computational performance and image quality, and boundary estimation algorithm to determine the phase boundary directly.

  • PDF

Under-Relaxed Image Restorative Technique for $Na^{23}$ MRI

  • Ro, D.W.;Ahn, C.B.
    • Proceedings of the KOSOMBE Conference
    • /
    • v.1992 no.05
    • /
    • pp.64-67
    • /
    • 1992
  • To improve signal-to-noise ratio in sodium image, short echo time (2-3 ms) and long data acquisition (10-20 ms) protocols are used. Sodium in biological specimens demonstrates a bi-exponential decay of transverse magnetization and the fast decaying component of the sodium signal results in the reconstruction of images which are blurred significantly. The spatially-dependent nature of the blurs are due mainly to the presence of short local transverse relaxation values (0.7-3 ms) of sodium in tissue. We present an algorithm that corrects for object-dependent blurs due to fast-decaying T2 and improves the computational behavior of the algorithm by incorporating a relaxation parameter into the iterative process.

  • PDF