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ABSTRACT. This paper proposes a new method for the inverse problem of the three-dimensional
reconstruction of the electrical activity of the brain from electroencephalography (EEG). Com-
pared to conventional direct methods using additional parameters, the proposed approach solves
the EEG inverse problem iteratively without any parameter. We describe the Lagrangian cor-
responding to the minimization problem and suggest the numerical inverse algorithm. The
restriction of influence space and the lead field matrix reduce the computational cost in this ap-
proach. The reconstructed divergence of primary current converges to a reasonable distribution
for three dimensional sphere head model.

1. INTRODUCTION

Electroencephalography (EEG) is one of noninvasive tools to measure the potential differ-
ence on the scalp surface, which is the result of movement of ions, the primary current, within
activated regions in the brain. EEG has several strong aspects as a tool of exploring brain ac-
tivity; for example, its time resolution is very high, i.e., on the level of a single millisecond,
compared to other methods of looking at brain activity, such as PET and fMRI which have time
resolution between seconds and minutes. EEG measures the brain’s electrical activity directly,
while other methods record changes in blood flow (e.g., SPECT, fMRI) or metabolic activity
(e.g., PET) which are indirect markers of brain electrical activity.

The reconstruction of the primary current distribution using EEG data which is the electric
potential measured at sensors on the scalp surface is the main goal of EEG research and called
the inverse problem of EEG. Its solution requires the repeated simulation of the electric poten-
tial distribution in the head by a given primary current, which is called the forward problem.

It has been known that there are primary current distributions which induce the same EEG
data [1]. This is an indication of the fact that the solution to the inverse problem is not unique.
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The non-uniqueness of the inverse problem implies that assumptions on the model as well
as anatomical and physiological a priori knowledge should be taken into account to obtain a
unique solution. In order to make the solution unique, additional conditions are imposed on
the solution. e.g., small number of current dipoles or spatial smoothness of the primary current
distribution.

The equivalent dipole method [2] is based on the moving dipole model. In this method
primary current in the brain are approximated by a small number of current dipoles, and their
locations and moments are estimated by fitting to the EEG data. In BESA (Brain Electric
Source Analysis) [3] and MUSIC (Multiple Signal Classification) [4], the locations of dipoles
are assumed to be fixed during certain time interval, and they are determined from the EEG data
measured repeatedly during that time interval. These approaches can be easily and intuitively
understood by clinicians. Moreover, since no restriction is imposed on the dipoles, this method
seems adequate so long as dipoles are expected to be localized. However a key problem is the
correct estimation of the number of dipoles. In these model, only the cross product of location
and moment of dipole is determined.

Alternatively continuous distribution is discretized as an array of numerous dipoles sited at
the activated region. Since the model allows a large degree of freedom, there are infinite num-
bers of primary current distribution that reconstruct the measured EEG data. In order to make
the solution unique, for example, spatial smoothness of the primary current distribution is used
in the Minimum Norm Method (MNM) and the Low Resolution Electromagnetic Tomography
(LORETA) [5]. In such distributed source models, however, the additional constraint has no
connection with the electro-physiological phenomena and it is quite difficult to evaluate the
adequacy of this constraint.

One conventional iterative method, the Focal Underdetermined System Solution (FOCUSS),
has another problem in convergence. The range of source distribution is getting smaller with
iterations and eventually converges to a point distribution. Therefore FOCUSS is required to
determine the proper number of iterations.

As one of iterative distributed source methods, the adjoint state approach in continuous case
was proposed in [6] where the source currents are obtained. However the method can not avoid
the intrinsic ill-posedness of the EEG inverse problem. In this paper we modify this approach to
reconstruct the divergence of source current instead of source current itself and implement the
method for EEG inverse problem in discrete case. The reconstructed source current converges
to a reasonable distribution for three dimensional sphere head model.

2. FORWARD PROBLEM FORMULATION

2.1. Maxwell equations. We begin with introduction of notations. Let E and D be the electric
field and electric displacement, respectively, ρ the electric free charge density, ε the electric
permeability and J the electric current density. By µ we denote the magnetic permeability and
by H and B the magnetic field and induction, respectively.

In the low frequency band (below 2000Hz) the temporal derivatives can be neglected in the
Maxwell equations of electrodynamics [7]. Therefore, the electric and magnetic fields can be
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described by the quasi-static Maxwell equations

∇ · D = ρ, (2.1a)
∇× E = 0, (2.1b)
∇× B = µJ, (2.1c)
∇ ·H = 0. (2.1d)

The electric field is expressed as a negative gradient of a scalar electric potential u,

E = −∇u. (2.2)

The electric current density is generally divided into two part, the so-called primary current,
Jp and secondary current σE,

J = Jp + σE, (2.3)

where σ denotes the 3×3 conductivity tensor.

2.2. Electric forward problem. Since the divergence of curl of a vector is zero, taking the
divergence of (2.1c) and using (2.2) and (2.3) give the Possion equation

∇ · (σ∇u) = ∇ · Jp in Ω . (2.4)

Let us assume that all fields of biological origin are quasi-static [8]. This allows us to establish
the relationship between the electric potential u and the primary current Jp that is movement
of ions within the dendrites of the large pyramidal cells of activated regions in the cortex of the
human brain through (2.4). It describes the electric potential distribution in the head domain Ω
due to the primary current Jp in the brain. For the forward problem which is assumed that the
primary current and the conductivity distribution in the head are given, the equation has to be
solved for the unknown electric potential distribution u with the boundary condition

σ
∂u

∂n
= σ∇u · n = 0 on S = ∂Ω (2.5)

and an additional reference point with given potential, i.e.,

uref = 0.

3. INVERSE PROBLEM FORMULATION

The inverse EEG problem aims to reconstruct the primary current distribution by only use
of EEG data in the conductivity head model. However, since Eq. (2.4) establishes that the
electric potential field u is generated by the divergence of primary current, we reconstruct the
divergence of primary current Ip = ∇ · Jp which is referred as the current source density [9].
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3.1. Mathematical formulation. Let N be the number of EEG sensors. We measure the dif-
ference of electric potential at several locations x1, x2, . . . , xN on the scalp and at a reference
location x0. Let m1,m2, . . . , mN be those measured EEG data. In the EEG problem, we
want to estimate the divergence of primary current Ip to produce the electric potential as close
as possible to the measured EEG data. This means that if we compute the electric potential
distribution ũ for such Ip with Eq. (2.4), then the error function

ϕ(u) =
1
2

N∑

i=1

(u(xi)− u(x0)−mi)2

achieves a minimum at ũ. We form the Lagrangian as

L(u,w, Ip) = ϕ(u) +
∫

Ω
(∇ · (σ∇u)− Ip)w dx,

where w is the Lagrangian multiplier. We then use the integration by part and the boundary
condition (2.5) to obtain

L(u,w, Ip) = ϕ(u)−
∫

Ω
σ∇u · ∇w dx−

∫

Ω
Ipw dx . (3.1)

This form of the Lagrangian is suitable for computing Gateaux derivatives with respect to Ip.
From the Gateaux derivative of the Lagrangian with respect to Ip in (3.1), we obtain

∂L
∂Ip

= −w.

This equation says that in order to find the divergence of primary current that yields a potential
distribution that minimizes ϕ(u), we should follow the descent direction w at every point x of
the interested region.

Using the integration by part again with imposed boundary condition for w such that σ∇w ·
n = 0 yields the form that is suitable for taking Gateaux derivatives with respect to u:

L(u,w, Ip) = ϕ(u) +
∫

Ω
∇ · (σ∇w)u dx−

∫

Ω
Ipw dx .

Taking the Gateaux derivatives of L with respect to the function u, we obtain

δL =
N∑

i=1

(u(xi)− u(x0)−mi)(δu(xi)− δu(x0)) +
∫

Ω
∇ · (σ∇w)δu dx .

This must be equal to 0 for all variations δu of u, hence the adjoint state equation is

∇ · (σ∇w) + f = 0 in Ω,
∇w · n = 0 on S,

(3.2)

where f(x) =
∑N

i=1(u(xi)− u(x0)−mi)(δ(x− xi)− δ(x− x0)) with the usual Dirac delta
function δ(x).
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FIGURE 1. Head model

3.2. Restriction to influence space. Let the influence space be the activated region where the
primary current can be produced. Physically, the primary current cannot be produced at the
region out of the brain and the signal from deep part of the brain is not detected with EEG
sensor. Therefore we consider only the cortex surface region CSε inside the cortex surface
whose distance from the cortex surface is less than ε as described in Fig. 1, where ε depends
on the measurability of EEG machine. Then the Lagrangian form (3.1) is expressed with
characteristic function χcsε as

L(u,w, Ip) = ϕ(u)−
∫

Ω
σ∇u · ∇w dx−

∫

Ω
Ipχcsεw dx . (3.3)

As considering the restricted influence space, from (3.3), we have

∂L
∂Ip

= −wχcsε . (3.4)

3.3. Algorithm: the adjoint state approach. We give a description for the algorithm to solve
the inverse EEG problems that is the constrained minimization problem as follows:

(1) Start with an estimate I
(0)
p and set i = 0.

(2) Solve the state equation (2.4) with Ip = ∇ · Jp to obtain u(i).
(3) Solve the adjoint state equation (3.2) with u(i) to obtain w(i).
(4) With u(i) and w(i), determine the gradient ∂L

∂Ip
by (3.4) and I

(i+1)
p using the steepest

descent method.
(5) If I

(i+1)
p is not close to I

(i)
p , then go to step 2 and set i = i + 1, else stop.

The main advantage of this adjoint state approach is to find Ip instead of Jp. It is well known
that finding Jp is severely ill-posed. On the contrary, finding Ip gives more stable results.
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4. NUMERICAL ASPECTS

For the numerical solution of the method, we choose a finite-dimensional subspace with di-
mension M , the number of nodes in Ω and a standard finite element basis φ1,. . . ,φM . Applying
the finite element techniques to Eq. (2.4) with Ip = ∇ · Jp yields an M ×M system of linear
equations

AU = Ĩp . (4.1)
Eq. (3.2) yields a similar M ×M system of linear equations to (4.1).

4.1. Lead field matrix. In each iteration of the proposed algorithm, we solve the state equa-
tion (2.4) for u and the adjoint state equation (3.2) for w. Additionally, in the modified steepest
decent method to determine how far we go to the negative gradient direction we solve the state
equation at least twice [10]. Therefore, we solve the state equation three times and the adjoint
equation once in each iteration of the algorithm.

To reduce the computational cost, we suggest computing the lead field matrix [11] denoted
by B, which maps Ĩp, the vector corresponding to Ip to UEEG, the vector of electric potential
at the sensors,

BĨp = UEEG. (4.2)
When the restriction matrix R is a mapping from the potential vector onto the sensors such that

RU = UEEG (4.3)

with only one nonzero entry with the value 1 in each row, B is computed as

B = RA−1.

by the relations (4.1) and (4.3). To find B, since we A is symmetric, we solve

ABT = RT . (4.4)

If the lead field matrix B is precomputed, then the estimated electric potential UEEG at EEG
sensors, which is needed in the state equation and the steepest decent method to determine the
line search is computed by (4.2) instead of solving the linear system (4.1). It means that we
only need to solve the adjoint state equation for w in each iteration of the inverse method.

4.2. Numerical inverse algorithm. The proposed method for inverse EEG problem to recon-
struct the divergence of the primary current is described by following steps:

(1) Compute the stiffness matrix A and the lead field matrix B with a given conductivity.
(2) Start with an estimated divergence of primary current Ĩ

(0)
p and set i = 0.

(3) Obtain UEEG from (4.2) with Ĩ
(i)
p .

(4) Solve the adjoint state equation (3.2) to obtain w with UEEG and EEG data.
(5) Determine a new value Ĩ

(i+1)
p with the line search α and the gradient −w using the

steepest decent method:
Ĩ(i+1)
p = Ĩ(i)

p + αw.

Here we compute Ueeg from (4.2) to find the line search α; see [10].
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TABLE 1. Computation time (sec) of with/without B

Computation with B without B
Meshing 21.1

Precomputation A 0.6
B 0.3 0

Inverse iteration (# of iterations) 803.2 (121) 2023.1 (121)
Total time 825.0 2044.7

(6) If Ĩ
(i+1)
p is not close to Ĩ

(i)
p , then go to step 3 and set i = i + 1, else stop.

In the inverse algorithm, the step 1 is called the precomputation step and the steps 2 to 6 are
called the inverse iteration.

As a stop condition for the inverse iteration in the step 6, we use the relative error of the
estimated divergecne of primary current:

‖Ĩ(i+1)
p − Ĩ

(i)
p ‖

‖Ĩ(i)
p ‖

< 10−3. (4.5)

The inverse method with the precomputed B is more efficient than the inverse method without
B. Because with B, we additionally solve (4.4) in the step 1, but in the steps 3 and 5 we
obtain UEEG by only the product of B and Ĩp instead of solving (4.1). Table 4.2 shows the
computational costs of two methods with h = 1/32 and the stop condition (4.5).

4.3. Numerical simulation. The numerical simulation is performed with a three dimensional
sphere domain divided into three layers with radius 0.6, 0.8, 1.0 and the conductivities 0.33,
0.01, 0.43 representing the brain, the skull, and the scalp, respectively; see Fig. 1. The cortical
surface is the boundary of brain. The sphere head model is approximated by meshes with 2,199
nodes and 11,415 tetrahedrons [12]. We employ the finite element method to implement the
method in discrete case and the modified steepest decent method as an update algorithm [10].
Let we further assume that EEG sensors directly correspond to nodes on the boundary of the
head model.

Let Nb and Nε be the number of nodes on boundary and nodes on CSε for ε = 1/20,
respectively. If we assume that we measured EEG data on all boundary nodes and the influence
space is small enough to make Nε is less than Nb then the number of EEG data is greater than
the number of unknowns. Therefore it becomes an over-determined problem which gives a
unique solution in the least squares sense.

The threshold process is defined as Ĩp = 0 if

Ĩp < max(Ĩp)− (100− β)(max(Ĩp)−min(Ĩp))
100

where β is the given percentage of threshold.
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(a) (b)

FIGURE 2. (a) True Ip (b) Reconstructed Ĩp with threshold 85%

The computation time for inverse iterations with the stop condition depends on the initial
estimated Ĩp. If any a priori information for initial guess is not given, we start with Ĩp = 0
for all nodes in the influence space. When the divergence of true primary current distribution
in the cortex surface is given as Fig. 2 (a), computational time from all zero distribution to the
result in Fig. 2 (b) is 63 seconds with 50 iterations. The result with 85% threshold is shown in
Fig. 2 (b). The node with the maximum value in Fig. 2 (b) is corresponding to the node with
the maximum value in Fig. 2 (a). The numerical tests are performed using MATLAB 2008a on
Microsoft Windows XP with Intel Core 2 Duo (2.3G MHz CPU clock rate) and 2G RAM.

5. CONCLUSION

We have introduced a new iterative distributed source method for EEG inverse problem using
the Lagrangian approach. It reconstructs the divergence of source current instead of source
current itself. The restriction of influence space is required to determine focal and realistic
solution and we suggest the computation of the lead field matrix in the numerical algorithm. In
the numerical simulation with the sphere model, it was shown that the reconstructed solution
converges to a reasonable distribution. The approach proposed in this paper is able to be applied
to other inverse problems.
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