• Title/Summary/Keyword: computational power

Search Result 1,924, Processing Time 0.026 seconds

Floor Response Spectrum Analysis of a Base-isolated Nuclear Power Plant (면진원전의 층응답스펙트럼 해석)

  • Jung, Jae-Wook;Lee, Sangmin;Hong, Jung-Wuk
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.29 no.4
    • /
    • pp.355-362
    • /
    • 2016
  • In order to secure the stability against strong earthquakes, isolation devices on the existing nuclear power plant have been introduced. By applying the isolation device on structures, it is possible to isolate structures from the ground motion. Therefore, the natural frequencies of the structures become longer, and the responses of the structures due to the ground motion decrease. Especially, when designing the nuclear power plant, it is important to ensure the safety of internal devices as well as the nuclear power plant itself. The floor response spectrum is commonly used in designing the internal devices. In this research, floor response spectrum is evaluated and the effect of second hardening behavior is investigated by performing earthquake analysis.

Conservativeness Evaluation of Response Acceleration Method used in Seismic Response Analysis of Power Cable Tunnel (전력구의 지진응답해석에 사용되는 응답진도법의 보수성 평가)

  • Lim, Jae-Sung;Kim, Gi-Bae;Chun, Nak-Hyun;Kim, Jae-Min
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.34 no.5
    • /
    • pp.309-317
    • /
    • 2021
  • In this paper, we present the evaluation results for the conservatism of the response acceleration method (RAM), for seismic response analysis of box-type power cable tunnels. We studied 50 examples, considering the cross sections of 25 power cable tunnels, and two soil conditions for each power cable tunnel. A refined dynamic analysis method considering the soil-structure interaction was further employed to evaluate the conservatism of the RAM. The comparison revelated that the seismic responses computed using the RAM were consistent with those obtained using the refined method, since the averages of response ratio (defined as the ratio of the response by RAM to that of the refined method) approached 1.0, and the standard deviations of the response ratio were less than 5%. Finally, we found that applying a load factor of 1.1 to the response of the RAM allowed for a conservative design for seismic loads.

Dual-model Predictive Direct Power Control for Grid-connected Three-level Converter Systems

  • Hu, Bihua;Kang, Longyun;Feng, Teng;Wang, Shubiao;Cheng, Jiancai;Zhang, Zhi
    • Journal of Power Electronics
    • /
    • v.18 no.5
    • /
    • pp.1448-1457
    • /
    • 2018
  • Many researchers devote themselves to develop model-predictive direct power control (MPDPC) so as to accelerate the response speed of the grid-connected systems, but they are troubled its large computing amount. On the basis of MPDPC, dual MPDPC (DMPDPC) is presented in this paper. The proposed algorithm divides the conventional MPDPC into two steps. In the first step, the optimal sector is obtained, which contains the optimal switching state in three-level converters. In the second step, the optimal switching state in the selected sector is searched to trace reference active and reactive power and balance neutral point voltage. Simulation and experiment results show that the proposed algorithm not only decreases the computational amount remarkably but also improves the steady-state performance. The dynamic response of the DMPDPC is as fast as that of the MPDPC.

Decentralized Nonlinear Voltage Control of Multimachine Power Systems with Non linear Interconnections (비선형 상호작용을 갖는 전력계통의 비선형 분산 전압제어)

  • Lee, Jae-Won;Yoon, Tae-Woong;Kim, Kwang-Youn
    • Proceedings of the KIEE Conference
    • /
    • 2003.11b
    • /
    • pp.47-50
    • /
    • 2003
  • For large-scale systems which are composed of interconnections of many lower-dimensional subsystems, decentralized control is preferable since it can alleviate the computational burden, avoid communication between different subsystems, and make the control more feasible and simpler. A power system is such a large-scale system where generators are interconnected through transmission lines. Decentralized control is therefore considered for power systems. In this paper, a robust decentralized excitation control scheme for interactions is proposed to enhance the transient stability of multimachine power systems. First we employ a DFL(Direct Feedback Linearization) compensator to rancel most of the nonlinearities; however, the resulting model still contains nonlinear interconnections. Therefore, we design a robust controller in order to deal with Interconnection terms. In this procedure, an upper bound of interconnection terms is estimated by an estimator. The resulting adaptive scheme guarantees the uniform ultimate boundedness of the closed-loop dynamic systems in the presence of the uncertainties.

  • PDF

THE EFFECT OF NUMBER OF VIRTUAL CHANNELS ON NOC EDP

  • Senejani, Mahdieh Nadi;Ghadiry, Mahdiar Hossein;Dermany, Mohamad Khalily
    • Journal of applied mathematics & informatics
    • /
    • v.28 no.1_2
    • /
    • pp.539-551
    • /
    • 2010
  • Low scalability and power efficiency of the shared bus in SoCs is a motivation to use on chip networks instead of traditional buses. In this paper we have modified the Orion power model to reach an analytical model to estimate the average message energy in K-Ary n-Cubes with focus on the number of virtual channels. Afterward by using the power model and also the performance model proposed in [11] the effect of number of virtual channels on Energy-Delay product have been analyzed. In addition a cycle accurate power and performance simulator have been implemented in VHDL to verify the results.

A Study on Computer Control of Voltage-Rective Power Part 1-Development of Computer Control Seheme (전압, 무효전력의 계산기제어에 관한 연구 1)

  • Kil Yeong Song
    • 전기의세계
    • /
    • v.25 no.6
    • /
    • pp.81-88
    • /
    • 1976
  • The present voltage-reactive power control aims at an overall coordination of reactive power sources and voltage regulation devices to keep the bus voltages within their allowable bounds on one hand and to reduce the transmission losses on the other. This paper presents an efficient computer control scheme for the real-time control of system voltage and reactive power on the basis of a simplified linear equation by using the system characteristic constant. Computational algorithm is used for the minimization of bus voltage deviation in the first phase of optimization and for the reduction of transmission losses under the constraint of vlotage settling condition in the second phase. The numerical example for sample practical system is also given. The present study on the computer control scheme will contribute to the automation of power system operation in the near future.

  • PDF

Temperature Characteristics of the Molten Carbonate Fuel Cell Stack (용융탄산염형 연료전지의 스택구조와 온도특성)

  • Lee, Choong-Gon;Ahn, Kyo-Sang;Park, Seong-Yeon;Seo, Hai-Kyung;Lim, Hee-Chun
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.15 no.1
    • /
    • pp.54-61
    • /
    • 2004
  • Temperature characteristics in a stack of molten carbonate fuel cell (MCFC) have been investigated with simulation based on the computational fluid dynamics (CFD) codes and experimental way. The MCFC has generally two stack structures when the natural gas is used as fuel; one is the external reforming type and the other is internal reforming type. Computer simulation at the external reforming stack suggests that the maximum temperature in the stack depends on the gas flow length. The 2 kW MCFC stack with 25 cm gas flow length showed about $675^\circ{C}$ of maximum temperature.

Design Load Analysis of Current Power Rotor and Tower Interaction

  • Jo, Chul H.;Lee, Kang-Hee;Hwang, Su-Jin;Lee, Jun-Ho
    • International Journal of Ocean System Engineering
    • /
    • v.3 no.4
    • /
    • pp.164-168
    • /
    • 2013
  • Tidal-current power is now recognized as a clean power resource. The turbine blade is the fundamental component of a tidal current power turbine. The kinetic energy available within a tidal current can be converted into rotational power by turbine blades. While in service, turbine blades are generally subjected to cyclic fatigue loading due to their rotation and the rotor-tower interaction. Predicting the fatigue life under a hydrodynamic fatigue load is very important to prevent blade failure while in service. To predict the fatigue life, hydrodynamic load data should be acquired. In this study, the vibration characteristics were analyzed based on three-dimensional unsteady simulations to obtain the cyclic fatigue load. Our results can be applied to the fatigue design of horizontal-axis tidal turbines.

Prediction of acoustic power radiated from an airfoil with thickness in turbulent flow (난류 유동장 내 두께를 가지는 단일 에어포일의 음향파워 예측)

  • Kim, Daehwan;Cheong, Cheolung
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2013.04a
    • /
    • pp.353-358
    • /
    • 2013
  • Present paper deals with turbulence-airfoil interaction noise and mainly investigates the effects of airfoil thickness on the broadband noise spectrum. The acoustic power radiation from an airfoil is predicted using high-order time-domain method, which is based on the computational aeroacoustic technique solving the linear Euler equations. The homogeneous and isotropic turbulence is generated by utilizing the synthetic turbulence modeling based on random particle method. The airfoils taken into consideration are a flat-plate and a NACA0012 airfoil aligned with uniform mean flow. The effects of airfoil thickness on the radiated inflow turbulence noise are investigated by comparing acoustic power spectrum predicted for each airfoil. The comparison of acoustic power spectrum reveals that the airfoil thickness significantly contributes the high frequency noise reduction.

  • PDF

Heat Flow Characteristics by Sectional Shapes in Underground Electric Power Tunnel (지하 전력구 단면 형상에 따른 터널내 열유동 특성)

  • Baek, Doo-San;Lee, Seung-Chul;Kwak, Dong-Kurl
    • Proceedings of the KIPE Conference
    • /
    • 2015.07a
    • /
    • pp.13-14
    • /
    • 2015
  • This study has conducted a computational analysis to find out about characteristics of heat flow emitted from power lines when the sectional form of electric power tunnel that adopts forced ventilation is shaped like a rectangular, arch or horseshoe. The result of analysis shows that the temperature in the vicinity of the power line peaked at $70^{\circ}C$ when the sectional form is a rectangular, which indicates it is less affected by ventilation than the form of an arch or horseshoe.

  • PDF