• Title/Summary/Keyword: computational paradigm

Search Result 92, Processing Time 0.021 seconds

A study on ubiquitous technology in information science (정보과학의 유비쿼터스 연구정책과 기술에 관한 연구)

  • 정창덕
    • Journal of the Korea Computer Industry Society
    • /
    • v.4 no.4
    • /
    • pp.661-670
    • /
    • 2003
  • The most recent paradigm shift is ubiquitous technology, or ubicomp for short. The ubicomp vision pushes computational services out of conventional desktop interfaces and into the environment in increasingly transparent forms. Research in ubiquitous computing raises many challenging issues for computer science in general, but successful research in ubiquitous computing requires the deployment of applications that can survive everyday use, and this in itself presents a great software engineering challenge. We will clarify these problems and discuss our approaches towards their solution. In this paper, we discuss the information technologyproblems that arise in conducting research toward this vision of future computer-enhanced environments.

  • PDF

Trends on Object Detection Techniques Based on Deep Learning (딥러닝 기반 객체 인식 기술 동향)

  • Lee, J.S.;Lee, S.K.;Kim, D.W.;Hong, S.J.;Yang, S.I.
    • Electronics and Telecommunications Trends
    • /
    • v.33 no.4
    • /
    • pp.23-32
    • /
    • 2018
  • Object detection is a challenging field in the visual understanding research area, detecting objects in visual scenes, and the location of such objects. It has recently been applied in various fields such as autonomous driving, image surveillance, and face recognition. In traditional methods of object detection, handcrafted features have been designed for overcoming various visual environments; however, they have a trade-off issue between accuracy and computational efficiency. Deep learning is a revolutionary paradigm in the machine-learning field. In addition, because deep-learning-based methods, particularly convolutional neural networks (CNNs), have outperformed conventional methods in terms of object detection, they have been studied in recent years. In this article, we provide a brief descriptive summary of several recent deep-learning methods for object detection and deep learning architectures. We also compare the performance of these methods and present a research guide of the object detection field.

An object-oriented design methodology for manufacturing information system (객체지향적 접근방법에 의한 생산정보시스템 설계방법)

  • 김철한;김광수
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1991.10a
    • /
    • pp.595-600
    • /
    • 1991
  • A competitive automated manufacturing system integrates the various control processes and data used in service of products. design, manufacturing, and, sale. CIM is a way to achieve such integration through computers and computational techniques in manufacturing, planning, and design. Developing effective CIM architectures is hampered by integration problems. The key to resolving these problems lies in a better understanding of manufacturing function and how it is related to other manufacturing functions. Integration of CIM environment requires coordinated solutions to data management problems for individual application system as well as for exchange of data between these applications. This requires a common framework for data management throughout the CIM environment. This paper discusses the design paradigm as a framework for this purpose. Designing an organizational structure to meet those goals invloves 1) analyzing the functions through functional decomposition, 2) developing a data model to coordinate functions. As a result, we propose an object-oriented design methodology for manufacturing information system.

  • PDF

Currents in Integrative Biochip Informatics

  • Kim, Ju-Han
    • Proceedings of the Korean Society for Bioinformatics Conference
    • /
    • 2001.10a
    • /
    • pp.1-9
    • /
    • 2001
  • scale genomic and postgenomic data means that many of the challenges in biomedical research are now challenges in computational sciences and information technology. The informatics revolutions both in clinical informatics and bioinformatics will change the current paradigm of biomedical sciences and practice of clinical medicine, including diagnostics, therapeutics, and prognostics. Postgenome informatics, powered by high throughput technologies and genomic-scale databases, is likely to transform our biomedical understanding forever much the same way that biochemistry did a generation ago. In this talk, 1 will describe how these technologies will in pact biomedical research and clinical care, emphasizing recent advances in biochip-based functional genomics. Basic data preprocessing with normalization and filtering, primary pattern analysis, and machine teaming algorithms will be presented. Issues of integrated biochip informatics technologies including multivariate data projection, gene-metabolic pathway mapping, automated biomolecular annotation, text mining of factual and literature databases, and integrated management of biomolecular databases will be discussed. Each step will be given with real examples from ongoing research activities in the context of clinical relevance. Issues of linking molecular genotype and clinical phenotype information will be discussed.

  • PDF

Ecoinformatics: A Review of Approach and Applications in Ecological Research

  • Lin, Chau Chin
    • Proceedings of the National Institute of Ecology of the Republic of Korea
    • /
    • v.1 no.1
    • /
    • pp.9-21
    • /
    • 2020
  • Ecological communities adapt the concept of informatics in the late 20 century and develop rapidly in the early 21 century to form Ecoinformatics as the new approach of ecological research. The new approach takes into account the data-intensive nature of ecology, the precious information content of ecological data, and the growing capacity of computational technology to leverage complex data as well as the critical need for informing sustainable management of complex ecosystems. It comprehends techniques for data management, data analysis, synthesis, and forecasting on ecological research. The present paper attempts to review the development history, studies and application cases of ecoinformatics in ecological research especially on Long Term Ecological Research (LTER). From the applications show that the ecoinformatics approach and management system have formed a new paradigm in ecological research.

Top 10 Key Standardization Trends and Perspectives on Artificial Intelligence in Medicine (의료 인공지능 10대 표준화 동향 및 전망)

  • Jeon, J.H.;Lee, K.C.
    • Electronics and Telecommunications Trends
    • /
    • v.35 no.2
    • /
    • pp.1-16
    • /
    • 2020
  • "Artificial Intelligence+" is a key strategic direction that has garnered the attention of several global medical device manufacturers and internet companies. Large hospitals are actively involved in different types of medical AI research and cooperation projects. Medical AI is expected to create numerous opportunities and advancements in areas such as medical imaging, computer aided diagnostics and clinical decision support, new drug development, personal healthcare, pathology analysis, and genetic disease prediction. On the contrary, some studies on the limitations and problems in current conditions such as lack of clinical validation, difficulty in performance comparison, lack of interoperability, adversarial attacks, and computational manipulations are being published. Overall, the medical AI field is in a paradigm shift. Regarding international standardization, the work on the top 10 standardization issues is witnessing rapid progress and the competition for standard development has become fierce.

An Information Modeling Methodolgy for CIM (통합생산을 위한 생산정보 모델에 관한 연구)

  • Kim, Cheol-Han;Kim, Kwang-Soo
    • Journal of Korean Institute of Industrial Engineers
    • /
    • v.17 no.2
    • /
    • pp.115-129
    • /
    • 1991
  • An ecconomically competitive automated manufacturing system integrates the various control processes and data used in design, manufacturing, sale and service of products. CIM is a way to achieve such integration through computers and computational techniques in design, planning, and manufacturing. Developing effective CIM architectures is hampered by integration problems. The key to resolving these problems lies in a better understanding of manufacturing function and how it is related to other manufacturing functions. Integration of CIM environment requires coordinated solutions to data management problems for individual application system as well as for exchange of data between these applications. This requires a common framework for data management throughout the CIM environment. This paper discusses the design paradigm as a framework for this purpose. Designing an organizational structure to meet those goals involves 1) analyzing the functions through functional decomposition, 2) developing a data model to coordinate functions. As a result, we propose an object-oriented design methodology for manufacturing information system.

  • PDF

Virtual Disassembly

  • Mo, Jianzhong;Zhang, Qiong;Gadh, Rajit
    • International Journal of CAD/CAM
    • /
    • v.2 no.1
    • /
    • pp.29-37
    • /
    • 2002
  • De-manufacturing is an entire process of collecting, disassembling, reusing, refurbishing, recycling, and/or disposing products that are obsolete or un-repairable. Designing the products for inexpensive and efficient disassembly enhances the ease of de-manufacturing. Virtual disassembly addresses the difficulty and the methods to disassemble a product in design stage rather than really disassemble a product at the end of its life cycle. Based on the virtual disassembly analysis results, design will be improved for better assembling/disassembling. This paper presents a systematic virtual disassembly methodology such as disassembly relation modeling, path/sequence automatic generation and evaluation. This paper also presents a new virtual disassembly interface paradigm via virtual reality technology for disassembly simulation in virtual environment.

Enhancing cloud computing security: A hybrid machine learning approach for detecting malicious nano-structures behavior

  • Xu Guo;T.T. Murmy
    • Advances in nano research
    • /
    • v.15 no.6
    • /
    • pp.513-520
    • /
    • 2023
  • The exponential proliferation of cutting-edge computing technologies has spurred organizations to outsource their data and computational needs. In the realm of cloud-based computing environments, ensuring robust security, encompassing principles such as confidentiality, availability, and integrity, stands as an overarching imperative. Elevating security measures beyond conventional strategies hinges on a profound comprehension of malware's multifaceted behavioral landscape. This paper presents an innovative paradigm aimed at empowering cloud service providers to adeptly model user behaviors. Our approach harnesses the power of a Particle Swarm Optimization-based Probabilistic Neural Network (PSO-PNN) for detection and recognition processes. Within the initial recognition module, user behaviors are translated into a comprehensible format, and the identification of malicious nano-structures behaviors is orchestrated through a multi-layer neural network. Leveraging the UNSW-NB15 dataset, we meticulously validate our approach, effectively characterizing diverse manifestations of malicious nano-structures behaviors exhibited by users. The experimental results unequivocally underscore the promise of our method in fortifying security monitoring and the discernment of malicious nano-structures behaviors.

A NEW STUDY IN EUCLID'S METRIC SPACE CONTRACTION MAPPING AND PYTHAGOREAN RIGHT TRIANGLE RELATIONSHIP

  • SAEED A.A. AL-SALEHI;MOHAMMED M.A. TALEB;V.C. BORKAR
    • Journal of applied mathematics & informatics
    • /
    • v.42 no.2
    • /
    • pp.433-444
    • /
    • 2024
  • Our study explores the connection between the Pythagorean theorem and the Fixed-point theorem in metric spaces. Both of which center around the concepts of distance transformations and point relationships. The Pythagorean theorem deals with right triangles in Euclidean space, emphasizing distances between points. In contrast, fixed-point theorems pertain to the points that remain unchanged under specific transformations thereby preserving distances. The article delves into the intrinsic correlation between these concepts and presents a novel study in Euclidean metric spaces, examining the relationship between contraction mapping and Pythagorean Right Triangles. Practical applications are also discussed particularly in the context of image compression. Here, the integration of the Pythagorean right triangle paradigm with contraction mappings results in efficient data representation and the preservation of visual data relation-ships. This illustrates the practical utility of seemingly abstract theories in addressing real-world challenges.