
Ecoinformatics: A Review of Approach and Applications 
in Ecological Research
Chau Chin Lin*

Society of Subtropical Ecology, Taipei, Taiwan

This is an Open Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/
by-nc/4.0), which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.

Copyright © National Institute of Ecology. All rights reserved.

Introduction

Informatics is a distinct scientific discipline, character-
ized by its own concepts, methods, body of knowledge, 
and open issues. It covers the foundations of computa-
tional structures, processes, artifacts and systems; and 
their software designs, their applications, and their im-
pact on society (CECE, 2017). Although Informatics was 
emerged in computer science, it has influenced many 
disciplines. Ecological communities adapt the concept of 
informatics in the late 20 century and develop rapidly in 
the early 21 century. The book “Ecological Informatics” 
(short as Ecoinformatics) was published in 2003 raised 
the concept of “understanding ecology by biologically-
inspired computation”(Recknagel, 2003). The concept 

takes into account the data-intensive nature of ecology, 
the precious information content of ecological data, and 
the growing capacity of computational technology to 
leverage complex data as well as the critical need for in-
forming sustainable management of complex ecosystems. 
It comprehends techniques for data management, data 
analysis, synthesis, and forecasting on ecological research 
(Recknagel, 2008). The development of ecoinformatics 
has therefore built a new paradigm on ecological research 
(Porter & Lin, 2017). Bird banding studies are an early 
example of ecoinformatics: the combination of ecologi-
cal research with informatics. Consider the history of the 
theory of bird migration. It was only in the early 1900s, 
after the advent of systematic bird-banding that a more 
accurate picture of migration emerged (Berthold et al., 
2001). In bird banding studies, coded tags or bands are 
placed on the legs of captured birds, allowing individual 
birds to be identified wherever else they might be found 
in the world. By maintaining a database that links a spe-
cific band code with the initial capture location and sub-
sequent observations, a picture of the migration pattern 
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of individual birds can be assembled. 
The purpose of the present paper attempts to review 

the development history, studies and application cases of 
ecoinformatics in ecological research especially on Long 
Term Ecological Research (LTER).

The History of Ecoinformatics

In the 2011 edition of Journal of Vegetation Science 
used “Ecoinformatics” as its special feature. The editorial 
cited Kareiva (2001) and Brunt et al. (2002) to mention 
“Ecoinformatics as a term and subfield of ecology first 
emerged from the biodiversity informatics initiatives of 
the U.S. Long-term Ecological Research Network (LTER) 
and the U.S. National Center for Ecological Analysis and 
Synthesis (NCEAS) in the late 1990s and early 2000s” 
(Dengler et al., 2011) . However, biodiversity informatics 
and ecoinformatics are largely overlapping fields, the first 
giving somewhat more emphasis to the taxonomic posi-
tion of the analyzed species, the second more to interac-
tions among taxa and between taxa and with their abiotic 
environment (Lin et al., 2008a). 

Each discipline now has its own journal: Biodiversity 
Informatics started in 2004 and Ecological Informatics in 
2006 (Dengler, 2011). Ecoinformatics not only overlaps 
with biodiversity informatics. It also related to bioin-
formatics. The need for a new bioinformatics has been 
suggested by Jone et al. (2006). The reason a new bioin-
formatics needed Jone et al. (2006) thought is “with the 
rapid growth of human populations and their impacts, it 
becomes critically important to better describe and under-
stand natural processes. The increasing demands within 
ecology for greater access to more types of data empha-
size the need for integrated data-management solutions 
that span biological sub disciplines from the gene to the 
biosphere. “ 

In the beginning of ecoinformtics introduced, it has 
emphasized primarily leveraging complex ecological data 
by computing. From the book of “Ecological Informat-
ics” (Recknagel, 2003), the author mentioned “Ecosystems 
analysis, synthesis and forecasting in the past ten years 
were very much influenced by inventions in computation-
al technology such as high performance computing and 
biologically-inspired computation. This computational ap-
proach allows discovering knowledge in complex”. How-
ever, Jones et al. (2006) and Michener and Jones (2012) 
suggest archiving, sharing, and integrating ecological data 
as the key focus of ecoinformatics. Moreover, Hampton 
et al. (2017) raised the issue of the gap knowledge and 
skills of ecoinformatics among ecological researches and 
the next generation scientists is urging to initiate training 
programs. They suggest five key skills: (1) data manage-
ment and processing, (2) analysis, (3) software skills for 
science, (4) visualization, and (5) communication methods 

for collaboration and dissemination are needed. 
When the third version of “Ecological Informatics” 

published in 2018, the scope of ecoinformatics focused 
on acquisition, archival, analysis, synthesis, and forecast-
ing of ecological data by novel computational techniques 
(Recknagel and Michener, 2018). From the first chapter of 
the book, the authors mentioned the core as: at its core, 
ecological informatics combines developments in infor-
mation technology and ecological theory with applica-
tions that facilitate ecological research and the dissemina-
tion of results to scientists and the public. Its conceptual 
framework links ecological entities (genomes, organisms, 
populations, communities, ecosystems, landscapes) with 
data management, analysis and synthesis, and communi-
cating and informing decisions by following the course of 
a loop.

Today, ecology has joined a world of big data (Farley et 
al., 2018; Hampton et al., 2013). Ecological data can be 
organized into data systems. A data system usually com-
prises many data types. Different research communities 
work with different data systems, and each community 
has different levels of expertise and historical investments 
in ecoinformatics.

The Critical Role of Ecological Data

Data plays two critical roles in the process of scientific 
research (Porter & Lin, 2017). First, most scientific ques-
tions or theories have their basis in observations of some 
kind. The story of Charles Darwin during his travels on 
H.M.S. Beagle (1831-1836) observed the diverse flora and 
fauna of South America, the Galapagos Islands, New Zea-
land and Australia reveals that he observed in the plants 
and animals of these distant areas helped him reach the 
conclusions that were ultimately embodied in his theory 
of evolution through natural selection. Without those ob-
servations, Darwin would have had little reason to ques-
tion the ruling paradigms of his day. This same relation-
ship, with data and observations driving researchers to 
formulate new questions, occurs every day in science. 

The second critical role played by data is in the testing 
of hypotheses. It is only repeatedly comparing what our 
data tells us with what our hypotheses predict will allow 
us to distinguish between hypotheses that are true from 
those that are false. A key feature of the data collected in 
most cases was that the data could have shown patterns 
that refuted the hypothesis proposed by the researcher 
conducting the study. Although data may be used to re-
ject a hypothesis, it does not mean that all aspects of a 
hypothesis that are not rejected are true (Popper, 1959). 
A classic example is the hypothesis that "all swans are 
white." Data collected in most parts of the world would 
fail to reject this hypothesis. However, if data from Aus-
tralia were included this hypothesis would be quickly 
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rejected because populations of black swans (Cygnus 
atratus) are found there. One of the challenges of testing 
ecological hypotheses is that ecological processes take 
place over a variety of time scales, from less than a sec-
ond for a fish eating a minnow to hundreds of years for 
the growth of a forest (Porter & Lin, 2017). 

As a general rule, ecological data become more valu-
able over time as the length of time series grow longer 
(Michener and Jones, 2012). Many examples show that 
the processes of research that take decades to millennia 
to operate. For example, the Eurasian collared doves took 
70 years to spread across Europe, and that the spread 
of maples and hemlocks across North America following 
glacial retreat took thousands of years. Short time scales 
are relatively easy to observe. However, longer time scales, 
especially those that exceed a single human lifespan are 
more difficult to study. Even processes that operate at 
intermediate scales can be difficult to observe - it's easy 
to observe the changes in a second-hand of a watch, but 
changes in the minute-hand are hard to see, and changes 
in the hour hand are almost impossible to see, even 
though all the hands are in constant motion.

From ecoinformatics point of view most data becomes 
gradually more valuable over time, because it becomes 
increasingly difficult to reproduce or assemble data from 
the past. Some data may decline in value over time be-
cause we may learn that the methods or instrumentation 
used were ineffective (Michener et al., 1997). Therefore, 
data management system is essential for ecological re-
search.

Ecological Data Management

As mentioned in “the history of ecoinformatics” section 
previously, the scope of ecoinformatics focused on acqui-
sition, archival, analysis, synthesis, and forecasting of eco-
logical data by novel computational techniques. It means 
a process that starts at the conceptualization of the 
project and concludes after the data have been archived 
and the results have informed future research as well as 
resource management, conservation, and other types of 
decision-making. The process has been called ecological 
data management (Porter & Lin, 2017). It is conceptual-
ized in terms of a data life cycle whereby: (1) projects are 
conceived and data collection and analyses are planned; 
(2) data are collected and organized, usually into data ta-
bles (e.g., spreadsheets) or databases; (3) data are quality 
assured using accepted quality assurance/quality control 
(QA/QC) techniques; (4) data are documented through 
the creation of metadata that describe all aspects of the 
data and research; (5) data are preserved in a data reposi-
tory or archive so that they may be reused and shared; (6) 
data are discovered or made discoverable so that they may 
be used in synthesis efforts or to reproduce results of a 

study; (7) data are integrated with other data in order to 
answer specific questions such as examining the influence 
of climate extremes on pollination ecology; and (8) data 
are explored, analyzed and visualized, leading to new 
understanding that can then be communicated to other 
scientists and the public (Michener, 2018).

Ecoinformatics Approach of  
Ecological Data Management

Ecoinformatics approaches are required for ecological 
data management. Over time, according to the principle 
of entropy, systems tend to become increasingly disor-
dered, unless external energy is applied. For ecological 
data it is called data entropy (Michener et al., 1997). This 
principle applies strongly to ecological data, which, in the 
absence of active efforts to preserve them, can be lost in 
a surprisingly short period of time. Often in the field, data 
are captured on a paper form, and then transcribed in to 
a computer-readable form (e.g., a spreadsheet) for analy-
sis. However, neither the paper form nor a spreadsheet 
file stored on a computer has characteristics that support 
long-term archival storage or facilitate the sharing of 
data. 

Data recorded on paper have the potential to last for 
long periods of time (Porter & Lin, 2017). For example, 
ancient scrolls from the Chinese Xia Dynasty, which were 
created in 2100 BCE, have survived for over 4,000 years. 
However, in practice, that potential is seldom realized. 
First, paper copies are easily misplaced or lost. Even if 
stored in file cabinets, those data may be lost when the 
files are discarded when a researcher retires. Second, pa-
per is susceptible to both external and internal damage. 
Fires and water damage can both destroy paper and many 
types of modern paper have poor archival quality. Due 
to acid in the paper itself, the pages become increasingly 
brittle and yellowed over time. Additionally, because paper 
is unwieldy to duplicate and requires lots of storage space 
there are usually only a few copies of data forms made. 
This limits our ability to share data among a wide array of 
researchers and makes the data more susceptible to loss. 

In many ways, electronic data are even worse than 
paper when it comes to having good archival qualities. 
The media of electronic data storage are also susceptible 
to damage from fire and water. Moreover, most storage 
media have a limited lifetime. Magnetic storage of data 
used hard drives and tapes tend to fade over time, so that 
data become unreliable after periods of time as short as 
a decade. Optical storage, such as compact disks (CDs) 
have a longer potential lifespan (up to 100 years), but 
rapid changes in technology make it unlikely that you 
will be able to find a reader for these disks in 20 years 
time. Rapid changes in the electronic formats associated 
with software also pose problems. Despite their poor ar-
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chival qualities, digital data have strong advantages for 
data sharing, and if managed using the best practices of 
ecoinformatics, can overcome some of the archival limita-
tions (Porter, 2000). Often this involves storing copies of 
the data in generic formats, such as text files, that can be 
read by many different kinds of software. However, some 
form of continued management is usually required to 
maintain access to digital data over the long term. 

In addition to using ecoinformatics approaches for data 
management, some types of data require use of informat-
ics tools from the beginning. Data collected by digital 
sensors are often produced at a rate that would defeat 
manual approaches (Porter et al., 2005). For example, car-
bon flux towers are used to measure productivity in the 
surrounding landscape. To do this, they measure both the 
wind speed and direction (so they know the source of air 
coming to the tower) and the amount of carbon dioxide 
in the air. The challenge, from the information manage-
ment perspective, is that they take these measurements 
10 times per second! That means 36,000 carbon dioxide 
measurements per hour, 864,000 measurements in a day 
and 314,712,000 measurements in a year. Automated 
computational tools are absolutely required to manage 
this flow of data (Lin & Hsia, 2010). 

Ecoinformatics approaches also help facilitate the shar-
ing of data (Vanderbilt et al., 2015). In the past ecologi-
cal data is usually handled by individual researchers who 
do not use ecoinformatics approaches. Data is collected 
and analyzed, and publications prepared, but the raw 
data itself is often lost in the years following its use in a 
publication. When data is lost or discarded, this is often 
not intentionally. Researchers may store data after they 
have completed an analysis on a computer disk, or store 
a paper copy in a file cabinet or laboratory notebook. 
However, when the disk is replaced, or fails, the data may 
be lost. Similarly, when a researcher retires, their files and 
notebooks are typically packed away in boxes and these 
are eventually discarded. Even if the data itself is pre-
served, without metadata or documentation, over time 
even the researcher who originally collected the data may 
be unable to recall all the details needed to use the data 
(Michener et al., 1997) . In contrast if data is archived and 
shared, it lends itself to new analyses. This allows the data 
to be re-used for additional analyses, and perhaps more 
importantly, combined with other data to allow regional, 
national and global analyses and long-term studies. 

The Key of Ecological Data Management

Ecological sciences are studies that attempt to un-
derstand complex questions of ecosystems, to engage 
in interdisciplinary collaboration, and to collect data in 
larger spatial and temporal scales. Ecological data collect-
ing usually uses a variety of protocols on the field. The 

resulting heterogeneous datasets are produced and stored 
in very different ways, which may not be familiar to all 
scientists (Jones et al., 2006). These datasets are also dis-
persed only within small research communities. Practically, 
an ecological dataset might reside in files that are poorly 
documented. This leads to the consequence that the files 
often become unusable upon a scientist’s departure or 
retirement. There is growing recognition that ecologi-
cal data, especially long-term ecological data, should be 
networked and persevered for future studies in replicat-
ing and validating scientific conclusions, and in enlarging 
spatial and temporal scales (Porter, 2000).

The goals of ensuring ecological data availability and 
usability usually are achieved by the use of digital media 
to capture, store, and process increasingly larger volumes 
of data, but this has in turn created new challenges for 
indexing, navigating, and documenting this sudden 
wealth of information (Lin et al., 2008b). Metadata is the 
critical tool for dealing with this challenge (Michener, 
2006). The term “meta” derives from the Greek word 
meaning “after, beside, between, or with”. On the other 
hand, the term “data” derives from the Latin plural of 
datum meaning “something given, a fact, a proposition”. 
So metadata can be define as “structured data which de-
scribes, explains, locates the characteristics of a source” 
(McCartney & Jones, 2002). There are three features a 
metadata generally include, which are content, context, 
and structure. Content relates to what the informa-
tion contains. Context indicates all the background of 
information source concerning who, what, why, where, 
and how. Structure relates to the formal set of associa-
tions among information objects. Since metadata is a 
kind of standard of describing information sources, there 
are always a variety of metadata standards. Some have 
been developed to describe and provide access to a par-
ticular type of information resource, such as geospatial 
resources (the US Federal Geographic Data Committee, 
FGDC). There are others like the Dublin Core developed in 
1995, which combined the Online Computer Library Cen-
ter (OCLC) and the National Center for Supercomputing 
Application (NCSA). The Dublin Core has received wide-
spread acceptance among many communities for resource 
discovery. 

Ianella (1999) pointed out that “there is an obvious 
need for a unified information model that reflects the 
needs of many metadata communities”. Since 1999, this 
need has been analyzed and conceptualized (Bearman 
et al., 1999). The conceptualized model consists of four 
components. 

Resource—The resource that is being described. 
Metadata—A number of metadata instances that de-

scribe the Resource, usually created by an Agent. 
Agent—An entity (human, organization, etc) that is re-
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sponsible for creating the metadata (and sometimes the 
Resource) and performs actions on the Resource.

Event—An action that occurred (or will occur) pertain-
ing to the Resource.

As illustrated above, metadata consists of complex con
structs to create and maintain. It can be expensive to pro-
ceed through the whole system. How then can one justify 
the costs and efforts involved? Fortunately, this challenge 
has enabled the creation of new projects related to de-
veloping tools and management of metadata from open 
source groups. Based on this information flow, Ecological 
Metadata Language (EML) and related tools are one of 
the significant examples of the integration and synthesis 
of ecological data at a global level. To provide the eco-
logical community with an extensible, flexible metadata 
standard for use in data analysis and archiving that will 
allow automated machine processing, searching and re-
trieval, members of the ecological research community in 
the United States have worked on compiling metadata as 
part of the data archiving process for over a decade (Jones, 
2003). In 1997, researchers at the National Center for 
Ecological Analysis and Synthesis (NCEAS) at the Univer-
sity of California, Santa Barbara began implementing the 
first version of EML, which was later revised several times 
and culminated in EML version 1.4 (McCartney and Jones, 
2002). Currently, EML has been released into EML version 
2.x which was an effort to revise by the Knowledge Net-
work for Biocomplexity Project (KNB). To promote EML 
using, NCEAS started to develop the modular Metacat 
framework (short for “Metadata Catalog”). The system 
incorporated RDF-like (Resource Description Framework) 
methods for packaging data sets to allow researchers to 
customize and revise their metadata (Jones et al., 2001). 
Simultaneously, in summer 1999, the LTER information 
management committee of the United States evaluated 
the status of metadata within the LTER network in light 
of a series of long-term goals for the future of informat-
ics in ecology (McCartney and Jones, 2002). The US LTER 
found that use of EML needed to standardize in both 
content and presentation format and a machine-readable 
form. Therefore, revision of EML was independently fund-
ed to begin the process. 

Although EML revising work is still proceeding, the 
consensus on using EML as the standard within ecology 
community has formed. According to EML survey re-
sponse summary report of US LTER (Servilla, 2005), 19 of 
the 26 LTER Network research sites responded to the use 
of EML. Several actions such as tools and standardization 
were proposed to take an action plan. Outside the United 
States, several LTER Network like Brazil, Costa Rica, 
Taiwan,Japan, Korea, Australia, and Malaysia reported 
that they had used EML to help managing ecological data 
(Kim et al., 2018; Vanderbilt et al., 2010; 2015).There are 

several guiding principles that have been followed in the 
development of EML. First, EML needs to allow scientists 
to provide standardized descriptions of data from the 
various disciplines in an openly accessible text format. 
Second, EML should be encoded in a machine-readable 
format, such as eXtensible Markup Language (XML), 
which has strong industry support and is independent 
of particular platforms or softwares. Third, EML should 
be compatible with existing metadata standards. Finally, 
EML standard should serve to integrate, rather than dic-
tate metadata only. Based on these principles, EML was 
designed to be (Jones, 2003):

1. Open to allow human readability and facilitate long-
term data archiving

2. Modular to promote re-use of metadata sections and 
structures

3. Extensible to allow additional metadata that is not 
part of EML to be included

4. Structured to allow machine processing for analytical 
applications and other software applications

5. Easy to implement by minimizing required metadata
In order to be machine-parseable, EML chooses XML 

for its encoding format. XML is a text format language 
for marking up data and documents. It is similar to 
HyperText Markup Language (HTML). However, unlike 
HTML, which is just for displaying style, XML is designed 
for tagging the content of a document with a meaning 
for validating that content against a formal schema (Mc-
Cartney & Jones, 2002). By adopting XML format, EML is 
implemented as a series of XML document types that can 
be used in a modular and extensible manner to document 
ecological data. The architecture of EML was designed 
based on previous work in other metadata standards. 
EML adopted the strengths of them, but also focused on 
improving the automated processing and integration of 
dataset resources. Currently, EML has updated to version 
2.2.0. With 10 major features as following (Jones et al., 
2019);

• Semantic Annotations
• Structured Funding Info
• Structured license info
• Fields for data papers
• Markdown support in text blocks
• Bibtex citation support
• �New fields for literature cited, and reference publica-

tions, and usage citations
• Added identifiers for taxonClassifications
• EML namespace changed to use https
• New validation rules and reference implementation

EML Based Information Management Systems

EML documents vary in their levels of content. To 
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evaluate the implementation of EML, five levels are used 
to determine completeness (Chapman, 2004; Cook et al., 
2001). Each level adds more elements from the EML sche-
ma to provide a more-comprehensive description of the 
data resources documented by the metadata, and thereby 
supports higher functionality. Level 1 contains of only 
minimum content for identifying a dataset. Level 2 adds 
temporal, geographic, and taxonomic coverage for dataset 
discovery. Level 3 adds dataset details that enable end-us-
er evaluation of the methodology and data entities. Level 
4 describes data access to allow automated data retrieval. 
Level 5 includes complete attribute and quality control 
descriptions of the raw data to support computer-assisted 
data integration and re-sampling. 

To help aid in managing ecological data for use by fu-
ture researchers, a number of information systems have 
been established. These systems have as their goal of long 
term managing data and assuring their usability over a 
20 to 100-year timeframe. Some of the archives are as-
sociated with specific research projects, and others focus 
on specific research topics and types of data. Researchers 
can contribute their data and metadata to these systems, 
and the archives curate the data, assuring that adequate 
backup copies are maintained, and that data formats are 
updated as needed, so that the data continues to be us-
able in new versions of software. They also provide search 
mechanisms or data catalogs, so that other researchers 
can discover data in the archive. Additionally some sys-
tems serve as clearinghouses. These do not curate data 
themselves, but instead provide search capabilities for 
locating data from many different archives, or even data 
made available by researchers themselves on their indi-
vidual web sites. 

Data Observation Network for Earth (DataONE) is the 
first EML based information management system derived 
from The Knowledge Network for Biocomplexity (KNB) 
project. It is a platform for environmental and ecologi-
cal science, to provide access to Earth observational data 
(Allard, 2012; Michener et al ., 2011; 2012). DataONE 
is supported by funding from the US National Science 
Foundation as one of the initial DataNet programs in 
2009. Funding was renewed in 2014 through April 2015. 
DataONE helps preserve, access, use, and reuse of multi-
discipline scientific data through the construction of pri-
mary cyberinfrastructure and an education and outreach 
program. DataONE provides scientific data archiving for 
ecological and environmental data produced by scien-
tists. DataONE's goal is to preserve and provide access to 
multi-scale, multi-discipline, and multi-national data. Us-
ers include scientists, ecosystem managers, policy makers, 
students, educators, librarians, and the public. 

DataONE links together existing cyberinfrastructure to 
provide a distributed framework, management, and tech-
nologies that enable long-term preservation of multi-

scale, multi-discipline, and multi-national observational 
data. The distributed framework is composed of Coordi-
nating Nodes located at the Oak Ridge Campus at Ten-
nessee, University of California Santa Barbara, and Uni-
versity of New Mexico, and member nodes. DataONE also 
provides resources including tools for accessing and using 
it.

LTER Europe, US LTER and Taiwan Forestry Research 
Institute (TFRI) , home of TERN, have become member 
nodes. Data can be contributed directly to one of the 
DataONE Member Nodes by ILTER data providers, and 
then the data will be discoverable through the DataONE 
web portal. DataONE will maintain a persistent archive 
of the data, so that ILTER networks need not have this 
responsibility (Vanderbilt et al., 2015). This strategy obvi-
ates the need for countries to operate their own Metacat, 
which has been a barrier for some to publicly providing 
their data.

The Environmental Data Initiative (EDI) is another 
EML based information management system (Gries et 
al., 2019). It began in the summer of 2016 as collabora-
tion between two US National Science Foundation (NSF) 
grants, one awarded to the University of Wisconsin (UW) 
named NIMO and the other to the University of New 
Mexico (UNM) for PASTA+ (together, they are known as 
EDI). Both groups originate from the Long Term Ecologi-
cal Research (LTER) Network and consist of highly mo-
tivated and experienced data practitioners, software de-
velopers, and research scientists. In addition to the LTER 
Network, EDI now supports a broad community of envi-
ronmental and ecological scientists funded through the 
Long Term Research in Environmental Biology (LTREB), 
the Organization of Biological Field Stations (OBFS), and 
the Macrosystem Biology (MSB) programs at NSF. The 
goal of the LTER focused NIMO (National Information 
Management Office) project was to expand and enhance 
the support of informatics in the LTER program, while the 
goal of PASTA+ (Provenance Aware Synthesis Tracking 
Architecture – Plus) was to provide an open access data 
repository that was built using the PASTA software stack 
for communities other than LTER. To be more inclusive of 
all served communities, both goals are now part of EDI’s 
vision. As such, EDI is a combination of informatics ex-
pertise and a production-level data repository for use by 
all four communities (and others). EDI also works closely 
with the LTER National Communications Office (NCO) 
and DataONE to promote data management best practic-
es and stewardship, and supports two separate DataONE 
member nodes, one for LTER and the other for all non-
LTER data (the EDI Member Node).

No matter DataONE or EDI are developed in the west-
ern ecological communities. In the eastern ecological 
communities, especially Eastern Asian ecological com-
munities also worked together to develop a regional EML 
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based information management system (Kim et al., 2018; 
Lin et al., 2006; Lin et al., 2008a). The work started in 
2004 under the support of Eastern Asian and Pacific In-
ternational Long Term Ecological Network (EAP-ILTER) 
(Kim et al., 2018). The system is divided into three tiers. 
The first tier deals with datasets and related information. 
Data produced by automated sensors communicating 
through wired or wireless networks, or collected manu-
ally by scientists, are managed by this tier. In addition, 
all information related to a dataset is also edited in this 
tier. The second tier relates to information management. 
Once datasets and other related information have been 
described, they are stored in a schema-independent data-
base. The third tier consists of the full web-based inter-
faces that allow easy access to the second tier. This tier 
also manages definitions of multiple user categories with 
different user rights.

The first step is to adopt the systems developed by the 
National Center for Ecological Analysis and Synthesis 
(NCEAS) at the University of California, Santa Barbara 
which include Morpho, Metacat (short for “metadata 
catalog”), and the EML2R from the Processing Tech-
niques for Automated Harmonization (PTAH) project at 
the University of Virginia. Jointly these provide the tools 
for creating, editing, storing, retrieving, and using EML 
documents (Higgins et al., 2002; Lin et al., 2008b). Then 
Morpho and Metacat were modified to resolve language 
coding issues in Asian countries including China, Japan, 
Korea, Malaysia, Mongolia, the Philippines, Taiwan, and 
Thailand. Finally, the system has been tested through 
workshops held domestically and internationally since 
2005.

The system includes an EML document database mod-
ule, a data analysis function module, and a collection of 
EML documents. A Metacat server has been set up for 
the Taiwan contains the modules of the EML document 
database. The EML document database module is a Java 
servlet that acts as the interface to any SQL-compliant 
relational database (Jones et al., 2001). It handles storage, 
replication, query, validation, transformation, and authen-
tication of EML documents and user management for re-
searchers from Taiwan. Furthermore, by pointing directly 
to the referent locations in the database, the raw data can 
be stored with the EML documents. 

The data analysis function module consists of 
“stylesheets” that translate EML documents into statisti-
cal programs. Building on the PTAH project, a web-based 
interface for creating "R" programs (“R” is a language and 
environment for statistical computing and graphics) was 
developed (Lin et al., 2008b). The interface altered the 
original UNIX-based PTAH engine so that it would work 
on a PC-based system. It not only extends the capabilities 
of the transformation but also has become a prototype 
of a server-side system that allows researchers to access 

EML, upload data, and then run "R" code on the server. 
Since “R” provides a wide variety of statistical and graphi-
cal techniques and is highly extensible, researchers can 
use it for data manipulation, calculation, and graphical 
display online without the need to have their own copy of 
"R" locally.

Recently, the National Institute of Ecology (NIE) in 
Korea is developing a new EML based information man-
agement system called Ecological Information Bank (Eco-
Bank) (Sung et al., 2018). EcoBank aims to develop into 
an online hub providing ecological information across the 
global that Enables such information to be accessible, 
usable, and publishable, by anyone in a free manner. Eco-
Bank is also dedicated to involving into an international 
source that helps reward leading opportunities to global 
collaborative research within the ecological information 
communities. Currently, EcoBank is forming a new para-
digm of the ecological information system which is differ-
ent from the exiting systems in EAP. The system has a full 
version in Korean language and moving to an interna-
tional version of the system. Testing has been among Ko-
rea, Taiwan, Thailand, Vietnam and Australia. It plans to 
fully set up in the near future and expanding to a global 
usage. 

Ecological Data Sharing

As ecological research becomes increasingly multidisci-
plinary way, it means that the research is a data-intensive, 
and multifaceted approach. Therefore, the need of shar-
ing data is manifest since no individual scientist, or even 
small group of scientists, can collect all the data that are 
needed to address the major ecological research questions 
(Porter, 2010). Sharing data that support publications fa-
cilities the scientific ideals of replication, building on pre-
vious work and syntheses is an obvious benefit (Parr and 
Cummings, 2005). Why is data sharing not yet common 
practice? Many reasons found. One of them has been 
recognized that the logistical barriers to data sharing exit 
(Parr & Cummings, 2005). Fortunately, not only national 
investment but also technology developed is benefited to 
the movement of data sharing. For example, Linked Data 
approach (Berners-Lee, 2006) which is a style of publish-
ing and interlinking structured data on the web provides 
a new way to dissemination of scientific data for sharing 
and reuse (Bizer et al., 2009). 

An example from Taiwan to report and discuss the use 
of Linked Data approach on the exiting relational data-
bases on forest fire, plant specimen, insect collection, for-
est dynamics plot census, and Taiwanese species checklist 
(Mai et al., 2011). The application adopts Linked Data ap-
proach to connect together data intrinsically related from 
distributed divisions. The approach develops a workflow 
through 4 steps to integrate and publish human and ma-
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chine readable ecological data as the Linked Open Data 
on the web. The example concludes that Linked Data ap-
proach is a new way to improve and advance ecological 
data sharing.

For science in general, data sharing is a new concept in 
today (Reichhardt, 1999). It is a good thing. Data sharing 
has been promoted in several fields, particularly genom-
ics, that have had a great success under the development 
of bioinforamtics. The genomics field has founded that 
growth on access to shared data. Genbank and other ge-
nome databases has lead the genomic scientist to to con-
duct cutting-edge research, and most of their time would 
be spent duplicating data already collected by others 
(Benson et al., 2005). Some advantages of sharing data 
are: 

• Elimination of duplication of effort. Researchers can 
reuse existing data, rather than collecting new, but dupli-
cative, data. 

• Improvement in data quality. When data is analyzed 
by multiple researchers, problems or inconsistencies within 
the data are more likely to be detected and fixed. 

• New science. Combining data in new and interesting 
ways allows researchers to answer scientific questions at 
larger spatial and temporal scales. 

Why data sharing is so important? It is because the new 
types of scientific inquiry made possible have to Integrat-
ing data from a large number of sites allows researchers 
to reach more general conclusions and observe larger-
scale patterns (Borregaard & Hart, 2016). Meanwhile, 
combining data from past studies with ongoing studies 
contributes a historical perspective that may explain as-
pects of the new data that would otherwise be hidden. 

However, the issue of "data ethics" is concerned on 
data shaing (Porter & Lin, 2017). Without ethical prin-
ciples for sharing data, few researchers would be willing 
to share data. The unethical approach of "if you give 
me your data, I will publish it" has all the ethical appeal 
of "if you give me your money, I will spend it." Instead, 
when using data generated by others, we need to adhere 
to ethical principles that are similar to those used when 
dealing with published material. All students know that it 
is plagiarism to copy, without proper acknowledgement, 
text and ideas from published materials. Similarly, it is un-
ethical to take someone else's data and present it as your 
own. Most journals now have mechanisms for directly 
citing data stored in repositories, and if not, data sources 
can still be acknowledged in the text of an article or in 
an acknowledgements section. 

To help data collectors, users and repository operators 
adhere to ethical principles, most data repositories or ar-
chives have data access policies. These policies typically 
address three groups: data users, data providers and the 

data repository itself (Michener, 2015). For data users, 
policies almost universally require the proper acknowl-
edgement of the data collector in publications that use 
the data. Additionally, policies may dictate additional 
conditions for the use of the data, perhaps limiting sale 
of the data, requiring the data user to identify themselves, 
or requiring that the author of the data be contacted 
regarding possible co-authorship. For data providers, poli-
cies often dictate the form and content of the metadata 
required. 

Ethical use of data collected by others is a requirement 
for an ecological researcher to maintain their standing in 
the scientific community. Researchers who fail to abide 
by data policies and licenses are subject to legal actions, 
sanctions by funding sources and, more importantly, loss 
of their reputation in the scientific community. Fortu-
nately, most researchers are more than happy to properly 
acknowledge data collectors and to abide by other ele-
ments in data policies and licenses. A survey of LTER sites 
found that problems regarding violations of data policies 
occurred in less than 0.1% data downloads (Porter, 2010). 
Moreover, a researcher who publishes data in a repository 
or archive can clearly document that they were the origi-
nal data source, so that conflicting claims of priority can 
be easily resolved. 

Despite major significant obstacles, ILTER information 
managers have formed grassroots partnerships and col-
laborated to provide information management training, 
adopt a common metadata standard, develop information 
management tools useful throughout the network, and 
organize scientist/information manager workshops that 
encourage scientists to share and integrate data (Vander-
bilt et al., 2015). Throughout this effort, ILTER has shared 
lessons learned from the successes of these grassroots in-
ternational partnerships to inform others who wish to col-
laborate internationally on projects that depend on data 
sharing entailing similar management challenges.

Application of Ecoinformatics

Carbon flux data management 
There is no universally accepted method of carbon flux 

data management system which uses a metadata ap-
proach has yet been established for data archiving, cura-
tion, discovery, retrieval, and calculation. Instead, each 
flux research group has formed their own regional net-
work such as CarboEurope, AmeriFlux, and AsiaFlux and 
each has developed software to address data management 
issues. Since 2004, Taiwan Ecological Research Network 
(TERN) has attempted to collect exiting EML-based tools 
to assemble them as a data management system that 
could be used universally in carbon flux research (Lin et 
al., 2009a; Lin and Hsia, 2010). 

Using this EML-based data management system, a 
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conceptual framework has been developed for flux data 
management that can be divided into three tiers (Fig. 1). 
The first tier deals with datasets and related information. 
Data produced by eddy covariance sensors communicat-
ing automatically through wired or wireless networks 
are managed by this tier. In this first tier, all information 
related to a flux dataset is documented in EML using the 
Morpho EML editor. The second tier relates to informa-
tion management. Once metadata and data quality have 
been described and checked, they are stored in a schema-
independent database called Metacat and Storage Re-
source Broker (SRB) released by San Diego Supercomputer 
Center (SDSC). The third tier consists of web service based 
scientific workflows that allow easy access to the second 
tier. The Kepler workflow system was adapted for use in 
this layer.

This data management model has been applied in Chi-
lan, a TERN site where two flux towers have been set up 
since 2000. The two towers equipped with vertical and 
horizontal wind vectors and CO2 mixing ratio at 10-20 
Hz are measured with a sonic anemometer mounted 5 m 
above the forest canopy, beside an intake port from which 
air is pumped to a closed-path infrared gas analyzer. A 
desktop computer collects these data. Every 30 minutes, 
the computer stores the raw data which is downloaded 
weekly and loaded to a SRB server to be retrieved to cal-
culate from the lab. Metadata of these raw data are cre-
ated and stored in the Metacat. Then, using the Kepler 
system, five workflows are run that search data from the 
Metacat, download data from the SRB, rotate data co-
ordinates, QA/QC the data, and Web-Pearman-Leuning 
(WPL) are created to standardize the flux data calculation 
process based on each 30 minutes data collected.

Output of the final calculation of all flux data are dis-

played in a text file which reports all the variables and 
a graphical file which shows the flux trend of a specific 
period. These secondary data can be saved locally or re-
motely.

The adaptation of the existing tools based on EML 
from flux data management experiment has achieved the 
goal that analyses of sequential ecological data be ac-
companied by formal process metadata.

Automated analysis of senor data
The development of senor networks allows sensors to 

gather data in the field and deliver them to the laboratory 
automatically. Already a variety of ecological important 
data such as generic meteorological measurements, soil 
and water temperatures and acoustical records are being 
collected by senor networks (Porter and Lin, 2013). Exam-
ples like high-frequency observations of aquatic systems, 
intensive and extensive sampling of watershed ecosystems, 
and unobtrusive observation of animal behavior have 
showed advantages of using senor networks, especially 
using wireless senor networks (Porter et al., 2005; 2012). 
However, the shift toward this data collection paradigm 
in turn creates new challenges for data management in-
cluding documentation, quality assurance, discovery, and 
analysis. In order to be useful, data must provide relevant 
and reliable information for scientific queries, which usu-
ally means that it is documented and has undergone 
quality assurance checks. Data of unknown quality are es-
sentially useless, and because inaccurate, low quality data 
can potentially bias results and lead to erroneous conclu-
sions.

Based on the Processing Techniques for Automated 
Harmonization (PTAH) project of University of Virginia, 
a web-based interface for checking EML defined datas-
ets has been developed and used since 2006 (Lin et al., 
2008b). It not only has the capabilities for transforming 
EML documents into working statistical programs, but 
also is a prototype of a server-side system that allows 
researchers to access EML, upload data, and then check 
data types and ranges based on the specifications defined 
in EML metadata (Lin et al., 2007). The interface provides 
functions to let users correct the errors online and save 
the corrected data. Researchers also can continue to run 
the "R" statistical program code on the server. Since “R” 
provides a wide variety of statistical and graphical tech-
niques and is highly extensible, researchers can use it for 
data quality control, data manipulation, calculation, and 
graphical display online without the need to have their 
own copy of "R" locally. The framework of automating 
analysis system provides a researcher access to tools that 
aid in the documentation and analysis of ecological data 
(Fig. 2). 

Flux tower1

Flux tower2

Field station

Morpho

SRB server

Metacat server

Kepler

Fig. 1. Using EML-based tools for carbon flux data man-
agement (Lin & Hsia, 2010).
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Forest dynamic plot data management
Several forest dynamics plot research projects in the 

East-Asia Pacific (EAP) region of the International Long-
Term Ecological Research (ILTER) network actively col-
lect long-term data, and some of these large plots are 
members of the Center for Tropical Forest Science (CTFS) 
network. The CTFS is a network of forest plots that moni-
tors trees 25-50-ha plots (Ashton et al., 1999). CTFS plots 
involve hundreds of scientists from more than 40 institu-
tions worldwide and share a common methodology as to 
measurements taken, periodicity of surveys, and identifi-
cation of tree species (Condit, 1995). There are also many 
other large forest research plots in the EAP-ILTER region 
that have comparable data. 

In order to facilitate the management of these data, 
a Forest Dynamics Plot Database and Application Work-
shop which adapted ecoinformatics approach was held in 
Taiwan 2009. The results of the workshop produced and 
tested an integrated information management framework 

(Lin et al., 2011; Vanderbilt et al., 2015). The goal for the 
framework was to demonstrate how fully documented 
data archives can be effectively used for data discovery, 
access, retrieval, analysis, and integration. Results from 
the work included setting up a database based on the 
Center for Tropical Forest Science structure on a local 
relational database (MySQL) server, an authentication in-
terface, a metadata query web page, and 3 workflows to 
test the framework (Fig. 3). 

The case concluded that the framework prototyped 
based on ecoinformatics approach should be useful to 
the forest dynamics research community through the es-
tablishment of mutualitic relationships between scientists 
and information managers (Lin et al., 2015). Although 
the functions of this framework have not immediately re-
solved all metadata and data sharing problems, it provides 
a collaborative way to link CTFS databases.
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R-PHP

Output

QA/QC

Raw data
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(MySQL)

(Web page)
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Fig. 2. The framework of auto-
mating analysis system (Lin et 
al., 2008b).
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data management (Lin et al ., 
2011).
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Forest healthy data management
Forest healthy management at national and regional 

scales is important component of providing what soci-
ety wants and needs from the forest ecosystem. From 
ecological point of view, a healthy forest nourishes its 
unique species and processes, while maintaining its basic 
structures, compositions and functions. From sociologi-
cal point of view, on the contrary, a healthy forest has 
an ability to accommodate current and future society 
needs for values, products and services. Regardless of 
how different concepts people view these complex for-
ests systems, maintaining the balance between forest 
sustainability and production of goods and services is the 
challenge for the forest administrative agency. However, 
fundamental questions do arise, such as: what is a truly 
healthy forest and compares to what, by what criteria 
can we specify a healthy forest, and how do we manage 
a healthy forest? To answer these questions we need to 
have multidiscipline scientific data. Without these data, 
it is difficult for decision makers and forest managers 
to formulate technically sound policies and address for-
est health management issues. In Taiwan, relevant data 
related to forest health are often collected by different 
scientific groups and consists of a variety of formats and 
in many geographic locations. To obtain integrated and 
high quality information to help decision making is of-
ten hindered by the lack of standard methodologies for 
data collection, data management practices, and detailed 
metadata documentation across groups.

Therefore, building a health forest information man-
agement research was initiated in 2004 (Lin et al., 2008b; 
2009b; Mai et al., 2011). The initial goals were: (1) to 
aggregate the existing dispersed databases including bio-
diversity, insect and disease, fire, and invasive species, (2) 
to develop a web-based portal that would streamline the 
discovery and exploration of forest health information, 
and (3) to provide data analysis application. Through 
choosing ecoinformatics approach, a web portal using 

Java servlet, user authentication, and backend schema-
independent metadata repository was designed to be used 
for a data catalog. A scientific work flow system was rec-
ommended for integrating and analyzing data to gener-
ate information of forest health management needs. The 
system includes datasets on biodiversity, insect and dis-
ease, fire, and invasive species. They are transformed and 
reorganized using species name and/or spatial attributes. 
Those data is archived using EML as metadata standard 
to combine the raw data stored in repository server called 
Metacat which is a schema-independent database. Finally, 
a full web-based interfaces that allow easy access to the 
second tier. This tier also manages definitions of multiple 
user categories with different user rights (Fig. 4).

Conclusions

Ecoinformatics development becomes a discipline to 
foster and change the research on ecology into a data 
intensive field. Ecological data from data collection to 
permanent archived through a data life cycle takes into 
account the ecoinformatics nature of information tech-
nology. The valuable content of a ecological repository 
based on the approach of ecoinformatics techniques has 
benefited ecological communities. It has formed as a new 
paradigm of ecology. At the core of ecoinformatics, the 
information system that combine developments in infor-
mation technology and ecological theory with applica-
tions has shown not only facilitate ecological research but 
also links ecological entities from organisms to ecosystems 
with data integration, analysis and synthesis.
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