DOI QR코드

DOI QR Code

Enhancing cloud computing security: A hybrid machine learning approach for detecting malicious nano-structures behavior

  • Xu Guo (College of Electronics and Information, Shanghai Dianji University) ;
  • T.T. Murmy (Faculty of Computer Engineering, University of Malaya)
  • Received : 2023.02.14
  • Accepted : 2023.09.27
  • Published : 2023.12.25

Abstract

The exponential proliferation of cutting-edge computing technologies has spurred organizations to outsource their data and computational needs. In the realm of cloud-based computing environments, ensuring robust security, encompassing principles such as confidentiality, availability, and integrity, stands as an overarching imperative. Elevating security measures beyond conventional strategies hinges on a profound comprehension of malware's multifaceted behavioral landscape. This paper presents an innovative paradigm aimed at empowering cloud service providers to adeptly model user behaviors. Our approach harnesses the power of a Particle Swarm Optimization-based Probabilistic Neural Network (PSO-PNN) for detection and recognition processes. Within the initial recognition module, user behaviors are translated into a comprehensible format, and the identification of malicious nano-structures behaviors is orchestrated through a multi-layer neural network. Leveraging the UNSW-NB15 dataset, we meticulously validate our approach, effectively characterizing diverse manifestations of malicious nano-structures behaviors exhibited by users. The experimental results unequivocally underscore the promise of our method in fortifying security monitoring and the discernment of malicious nano-structures behaviors.

Keywords

Acknowledgement

This work was supported by Shahid Rajaee Teacher Training University under grant number 4951.

References

  1. Castro Jorge, P., Simoes, F.M.F. and Pinto da Costa, A. (2015), "Dynamics of beams on non-uniform nonlinear foundations subjected to moving loads", Comput. Struct., 148, 24-34. https://doi.org/10.1016/j.compstruc.2014.11.002
  2. Gbadeyan, J.A. and Dada, M.S. (2011), "A comparison of dynamic responses of three versions of moving load problem involving elastic rectangular plates", J. Vib. Control, 17, 903-915. https://doi.org/10.1177/1077546310377910
  3. Chen, J.S. and Tsai, S.M. (2016), "Sandwich structures with periodic assemblies on elastic foundation under moving loads", J. Vib. Control, 22, 2519-2529. https://doi.org/10.1177/1077546314548470
  4. Daikh, A.A., Drai, A., Houari, M.S.A., Eltaher, M.A.J.S. and Structures, C. (2020), "Static analysis of multilayer nonlocal strain gradient nanobeam reinforced by carbon nanotubes", Steel Compos. Struct., 36(6), 643-656. https://doi.org/10.12989/scs.2020.36.6.643
  5. Ding, L., Zhu, H.P. and Wu, L. (2016), "Effects of axial load and structural damping on wave propagation in periodic Timoshenko beams on elastic foundations under moving loads", Phys. Lett. A, 380, 2335-2341. https://doi.org/10.1016/j.physleta.2016.05.023
  6. Farrokhian, A. (2020a), "Buckling response of smart plates reinforced by nanoparticles utilizing analytical method", Steel Compos. Struct., 35(1), 1-12. https://doi.org/10.12989/scs.2020.35.1.001
  7. Farrokhian, A. (2020b), "The effect of voltage and nanoparticles on the vibration of sandwich nanocomposite smart plates", Steel Compos. Struct.,, 34(5), 733-742. https://doi.org/10.12989/scs.2020.34.5.733
  8. Geem, Z.W., J.H. Kim, and G. Loganathan, (2002), "Harmony search optimization, application to pipe network design", Int. J. Model. Simul., 22(2), 125-133. https://doi.org/10.1080/02286203.2002.11442233
  9. He, W.Y. and Zhu, S. (2016), "Moving load-induced response of damaged beam and its application in damage localization", J. Vib. Control, 22, 3601-3617. https://doi.org/10.1177/1077546314564587
  10. Kaur, T., Singh, A.K., Chattopadhyay, A. and Sharma, S.K. (2022), "Dynamic response of normal moving load on an irregular fiber-reinforced half-space", J. Vib. Control, 22, 77-88. https://doi.org/10.1177/1077546314528525
  11. Mirjalili, S., S.Z.M. Hashim, and H.M. Sardroudi, (2012), "Training feedforward neural networks using hybrid particle swarm optimization and gravitational search algorithm", Appl. Math. Comput., 218(22), 11125-11137. https://doi.org/10.1016/j.amc.2012.04.069
  12. Najjar, M.F., Nehdi, M.L., Azabi, T.M., Soliman, A.M. (2017), "Fuzzy inference systems-based prediction of engineering properties of two-stage concrete", Comput. Concr., 22(2), 133-152. https://doi.org/10.12989/cac.2017.19.2.133
  13. Omar, T., Nehdi, M.L. and Zayed, T. (2017), "Integrated condition rating model for reinforced concrete bridge decks", Comput. Concr., 28(5), 23-44. https://doi.org/10.12989/cac.2017.28.5.023
  14. Omran, M.G. and M. Mahdavi, (2008), "Global-best harmony search", Appl. Math. Comput., 198(2), 643-656. https://doi.org/10.1016/j.amc.2007.09.004
  15. Reddy, J.N. (1984), "A simple higher order theory for laminated composite plates", J. Appl. Mech., 51, 745-752. https://doi.org/10.1115/1.3167719
  16. Suleiman, A.R. and Nehdi, M.L. (2017), "Modeling self-healing of concrete using hybrid genetic algorithm - artificial neural network", Materials, 15(135), 88-91. https://doi.org/10.3390/ma10020135
  17. Shu, C., Chew, Y.T. and Richards, E. (1995), "Generalized differential and integral quadrature and their application to solve boundary layer equations", Int. J. Numeric. Meth. Fluids, 21, 723-733. https://doi.org/10.1002/fld.1650210903
  18. Shahriar, A. and Nehdi, M.L. (2013), "Modeling rheological properties of oil well cement slurries using multiple regression analysis and artificial neural networks", J. Mater. Sci., 5(1), 126-144.
  19. Simsek, M. and Kocaturk, T., (2009), "Nonlinear dynamic analysis of an eccentrically prestressed damped beam under a concentrated moving harmonic load", J. Sound Vib., 320, 235-253. https://doi.org/10.1016/j.jsv.2008.07.012
  20. Song, Q., Shi, J., Liu, Z. and Wan, Y. (2021), "Dynamic analysis of rectangular thin plates of arbitrary boundary conditions under moving loads", Int. J. Mech. Sci., 117, 16-29. https://doi.org/10.1016/j.ijmecsci.2016.08.005
  21. Sudheesh Kumar, C.P., Sujath, C. and Shankar, K. (2015), "Vibration of simply supported beams under a single moving load, A detailed study of cancellation phenomenon", Int. J. Mech. Sci., 99, 40-47. https://doi.org/10.1016/j.ijmecsci.2015.05.001
  22. Wang, D., Zhang, W. and Zhu, J. (2021), "A moving bounds strategy for the parameterization of geometric design variables in the simultaneous shape optimization of curved shell structures and openings", Finite Elem. Anal. Des., 120, 80-89. https://doi.org/10.1016/j.finel.2016.07.002
  23. Wang, Y. and Wu, D. (2022), "Thermal effect on the dynamic response of axially functionally graded beam subjected to a moving harmonic load", Acta Astronaut., 127, 117-181. https://doi.org/10.1016/j.actaastro.2016.05.030
  24. Yaseen, Z.M., Keshtegar, B., Hwang, H.J., Nehdi, M.L. (2019), "Predicting reinforcing bar development length using polynomial chaos expansions", Eng. Struct., 195, 524-535. https://doi.org/10.1016/j.engstruct.2019.06.012
  25. Yu, D., Wen, J., Shen, H. and Wen, X. (2012), "Propagation of steady-state vibration in periodic pipes conveying fluid on elastic foundations with external moving loads", Phys. Lett. A, 376, 3417-3422. https://doi.org/10.1016/j.physleta.2012.09.041