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Abstract

Bioinformatics is a rapidly emerging field of biomedical research. A flood of large-
scale genomic and postgenomic data means that many of the challenges in biomedical
research are now challenges in computational sciences and information technology.
The informatics revolutions both in clinical informatics and bioinformatics will change
the current paradigm of biomedical sciences and practice of clinical medicine,
including diagnostics, therapeutics, and prognostics.

Postgenome informatics, powered by high throughput technologies and genomic-
scale databases, is likely to transform our biomedical understanding forever much the
same way that biochemistry did a generation ago. In this talk, I will describe how these
technologies will impact biomedical research and clinical care, emphasizing recent
advances in biochip-based functional genomics. Basic data preprocessing with
normalization and filtering, primary pattern analysis, and machine learning algorithms
will be presented. Issues of integrated biochip informatics technologies including
multivariate data projection, gene-metabolic pathway mapping, automated
biomolecular annotation, text mining of factual and literature databases, and integrated
management of biomolecular databases will be discussed. Each step will be given with
real examples from ongoing research activities in the context of clinical relevance.
Issues of linking molecular genotype and clinical phenotype information will be

discussed.
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1. Clinical Informatics and Bioinformatics

The decade of 1940s brought the first electronic digital computers as well as the first
antibiotic, penicillin. Motivated by these revolutionary innovations, a few biomedical
researchers started to explore the possible utility of digital computers by the late 1950s.
Remarkable use of computers in medical sciences, that are fundamentally
information-intensive, was made by the 1960s. The English term medical informatics (a
translation from the Russian informatika) first appeared in 1974 by the need of a name for
this - domain of new biomedical knowledge and by the lack of a single English term that
includes both information (what is processed) and computers (how it was processed) and
encompasses all the fields of science, engineering, and technology).

Bioinformatics, a newly named and rapidly emerging field of biomedical research, has been
recognized for about a decade. A flood of large-scale genomic and postgenomic data,
powered by high throughput technologies and large-scale databases, means that many of the
challenges in biomedical research are now challenges in computational sciences. Not only
are many of the fundamental problems in genomics/proteomics (ie., four-letter and
20-letter-alphabet texts) the classical problems of computer sciences such as sequence
homology, pattern recognition, structure prediction, and network analysis, but also are
structural, behavioral, and developmental features of living organisms fundamentally

informatical phenomena.

Biomedical informatics, the convergence of clinical informatics and bioinformatics will
radically transform our biomedical understanding forever much the same way that
biochemistry did a generation ago. Some schools have already integrated bioinformatics and
clinical informatics programs?3) that have shared areas of research, core methodologies,
challenges, goals, and impact¥%). As bioinformatics moves from constructing raw
biomolecular data to their biological functions and clinical importance, quality clinical
information will become the critical part of further progress. Patient's biomolecular
information such as personal and familial genetic code will soon be included in his/her
electronic medical record as the most predictive clinical information for diagnostics,
therapeutics, and prognostics, and threaten the right of patient's privacy and confidentiality.
Comprehensive integration of clinical informatics and bioinformatics systems will be one of
the primary challenges in the next decades.

2. Accomplishments of Bioinformatics and the Clinical Relevance of Biochip

Informatics

The critical dependence of the success of Human Genome Project (HGP) on bioinformatics



constitutes just one example among the remarkable accomplishments of bioinformatics:
sequence alignment of DNA and protein, natural genetic variation, prediction of structure
and function of biological macromolecules, analysis of biomolecular interaction networks,
integration of heterogeneous biological databases, biomolecular knowledge representation,
simulation of biological processes, analysis of the data created by large-scale biological
experiments, molecular and drug design.

Most researchers agree that the challenge now is to understand all the data. The speed of
data generation now exceeds that of interpretation (ie. more sequences than related
publications in GenBank). It becomes even more serious by the introduction of biochips that
measure the functional activities of genes and proteins. DNA microarrays are microscopic
slides containing a large number of cDNA (or oligonucleotide) samples as fluorescently
labeled probes to quantitatively monitor the abundances of transcripts (or mRNA's). Image
scanner translates fluorescent intensities into a numerical matrix of expression profiles.

Now that we have comprehensive maps of human genome and transcriptome and that
biochip technology can be applied to cells or tissue samples without pulling genes or
proteins from them, it is such a fascinating technique to address the comprehensive spatial
and temporal genomic complexity in living organisms under different experimental
conditions. Biochip informatics with comprehensive expression profiling clearly constitute one
of the most straightforward bridge from biomolecular informatics to clinical medicine to

improve diagnostics, therapeutics and prognostics.

3. Integrated Biochip Informatics in Functional Genomics/Proteomics

3-1. Biochip informatics: basic data analysis

Because there are many sources of noise and systematic variability in microarray
experiments”)8), data normalization and preprocessing are crucial in the analysis.
Normalization includes those transformations that control systematic variabilities within a
chip or across multiple chips. The simplest way of data normalization can be done by
dividing or subtracting all expression values by a representative value for the system or by
a linear transformation to a fixed mean and unit variance. However, the linear response
between true expression level and measured fluorescent intensity may not be guaranteed?,
especially when dye biases depend on array spot intensity or when multiple print tips are
used in microarray spotterl0).

Data preprocessing includes those transformations that prepare the data for the subsequent
analysis. Scaling and filtering are the major steps of data preprocessing. A low-variation



filtler to exclude genes that did not change significantly across experiments has been
successfully applied in many studies!l). Statistical significance testing such as analysis of
variance and multiple comparisons can also be used to filter the data when enough number
of repeated observations are available.

The importance of data visualization cannot be overemphasized. It is highly recommended
to scatter plot the data, whenever possible. The most straightforward approach to
microarray data analysis is to find differentially expressed genes across different
experimental conditions1?)13). Standardized expression profiling, consistent database design,
and streamling experimental process management are all crucial as well as all the following
supervised and unsupervised machine learning algorithms to make sense of mountains of
genomic data.

3-2. Biochip informatics: functional clustering and machine learning approaches

A general question in many research areas is how to organize observed data into
meaningful structures. One very common difficulty in biochip data analysis is the very high
dimensionality of the data. Data projection method reduces high dimensionality and projects
complex data structure on a lower dimensional space. Cluster analysis, by reducing
dimensionality, creates hypothesized clusters and helps researchers to infer unknown
functions of genes based on the assumption that a group of genes with similar expression
profiles may be functionally associated.

Principal component analysis, a statistical approach to reduce dimensionality without losing
significant information by paying attention only to those dimensions that account for large
variance in the data, has been applied to microarray data analysis!4). Mutidimensional
scaling, a data projection method originally developed in mathematical psychology, has also
been shown to be a powerful tool in functional genomics researchl®).

Cluster analysis is currently the most frequently used multivariate technique to analyze
microarray data. Clusters can be developed using a variety of similarity or distance metrics:
Euclidean distance, correlation coefficients, or mutual information. Hierarchical tree clustering
joins similar objects together into successively larger clusters in a bottom-up manner (ie.,
from the leaves to the root of the tree), by successively relaxing the threshold of joining
objects or setsl6)17). The relevance networks take the opposite strategyl®). It starts with a
completely connected graph with the vertices representing each object and the edges
representing a measure of association and then links are increasingly deleted to reveal
'naturally emerging' clusters at a certain threshold.

Partitional clustering algorithms, such as K-means analysis and self-organizing maps (SOM)19),



which minimize within-cluster scatter or maximize between-cluster scatter were shown to be
capable of finding meaningful clusters from functional genomic data20)21), Creation of
hierarchical-tree structure in a top-down fashion (ie., from the root to the leaves of the
tree) by successive 'optimal' binary partitioning based on graph theory2?) and geometric
space-partitioning principle?3) has also been also introduced.

The 'optimal' paritioning problem (i.e, the best clustering) is fundamentally NP-hard and
can be viewed as an optimization problem. Most of the meta-heuristic algorithms such as
simulated annealing, genetic algorithms?4), and Tabu search can all be applied to attain
better understanding of the complex data structure of genomic-scale expression profiles.
Reliability of clusters as well as cluster quality measures for evaluation of clustering
solutions should be addressed.

3-3. Integrative biochip informatics

Exploratory data analysis like clustering is appropriate when there is no a priori knowledge
about the area of research. Such technique is known as unsupervised machine learning in
artificial intelligence community. With increasing knowledge of complex biological systems,
supervised machine learning techniques (or classification algorithms) are also increasingly

introduced to functional genomics resulting significant success?5)26).

In addition to clustering and classifying (or unsupervised and supervised machine learning)
expression profiles, systematic integration and streamlining of appropriate informatics
technologies can magnificently enhance the productivity of funcitonal genomics research. For
example, PubGene?”) links gene expression profiles to biomedical literature by combining
gene ontology and text mining techniques applied to MEDLINE database. A variety of
meta-databases?8) and natural language processing techniques?9) are being applied to extract
biomolecular interaction networks from biomedical literature and factual databases. Linking
these information to genetic regulatory network and metabolic pathway information like
KEGG is under vigorous research. Structural sequence information can be used to greatly
enhance functional understanding30).

We have also developed automatic annotation machines for each microarray probes by
integrating many of the publicly available bioinformatics databases. An automated inference
engine to predict the functional annotation of genes is working together with all the
streamlined biochip informatics technologies including basic data analysis, functional
clustering, and supervised classification algorithms. Mangement of integrated database as
well as intelligent modules are getting more and more important and challenging. We are
heading to integrate these biochip informatics technologies to the advanced clinical



information systems at Seoul National University Hospital.

4. Biomedical Informatics: the New Paradigm for Biomedical Research.

Large areas of medical research and biotechnological development will be permanently
transformed by the evolution of high throughput techniques and informatics. Biochip
technology is one of the most readily applicable bioinformatics innovations to biomedical
research and clinical medicine. It was demonstrated that certain form of cancer can be
classified by large-scale gene expression profiling3l). The capability of new disease class
discovery as well as prognostic prediction were also demonstrated3?. Drug discovery is
being transformed by new developments in molecular cell biology and bioinformatics.

This spectacular capability of biochip technology for clinical medicine is no wonder
considering that what it essentially does is simultaneously performing tens of thousands of
molecular marker studies with comprehensive sets of biologically the most informative
molecules, genes and proteins, in a very systematic and quantitative fashion. It uncovers the
molecular basis of histopathological processes, the fundamentals of modern diagnostics.

Bioinformatics won't replace experiments, but miniaturization and automation of the
laboratory processes can magnificently streamline and enable the discovery process.
Integrating quality clinical information is crucial to achieve real improvements in clinical
diagnostics, therapeutics, and prognostics. It will, in turn, permanently transform the
structure and function of our biomedical knowledge bases.

Weaving the horizontally integrated 'omic' revolution (ie., genome, transcriptome, proteome,
metabolome, and biome) in biomedical sciences with the vertical integration of biomedical
informatics (i.e., bio-molecular informatics, computational cell biology33), computational
physiology34) (ex., neuroinformatics3%)), digital anatomy36é) (i.e., structural informatics),
chemoinformatics37)38), clinical informatics3%), and public health informatics49)) has now come
of age. The new biomedical science will be both molecularly-informed and
informatically-empowered.
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