• Title/Summary/Keyword: computational modelling

Search Result 308, Processing Time 0.026 seconds

Efficient Octree Encoding for Real-Time Transmission of 3D Geometric Data through Internet (인터넷을 통한 3D 형상 데이터의 실시간 전송을 위한 효율적인 Octree 인코딩 방법에 관한 연구)

  • 류중현;김영우;김덕수
    • Korean Journal of Computational Design and Engineering
    • /
    • v.7 no.4
    • /
    • pp.262-268
    • /
    • 2002
  • Octree representation has the advantage of being able to represent complex shapes approximately through the repetition of simple primitive shapes. Due to this reason, octree representation together with VRML(Virtual Reality Modelling Language) is usually used for approximating 3D shapes. Since the data size of octree representation increases rapidly as 3D shape to be represented is more and more complicated, its transmission time also increase. In this paper, provided is the new octree representation and encoding/decoding scheme for real-time transmission through the internet in order to visualize 3D geometric data of large size approximately.

A Review of Three Different Studies on Hidden Markov Models for Epigenetic Problems: A Computational Perspective

  • Lee, Kyung-Eun;Park, Hyun-Seok
    • Genomics & Informatics
    • /
    • v.12 no.4
    • /
    • pp.145-150
    • /
    • 2014
  • Recent technical advances, such as chromatin immunoprecipitation combined with DNA microarrays (ChIp-chip) and chromatin immunoprecipitation-sequencing (ChIP-seq), have generated large quantities of high-throughput data. Considering that epigenomic datasets are arranged over chromosomes, their analysis must account for spatial or temporal characteristics. In that sense, simple clustering or classification methodologies are inadequate for the analysis of multi-track ChIP-chip or ChIP-seq data. Approaches that are based on hidden Markov models (HMMs) can integrate dependencies between directly adjacent measurements in the genome. Here, we review three HMM-based studies that have contributed to epigenetic research, from a computational perspective. We also give a brief tutorial on HMM modelling-targeted at bioinformaticians who are new to the field.

A Study on Information of Steel Bridges Using Application Protocols of STEP on the Web (웹상에서 STEP의 응용프로토콜을 이용한 강교량 정보운용에 관한 연구)

  • 이상호;정연석;임승완
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2002.04a
    • /
    • pp.284-291
    • /
    • 2002
  • New information technology developments continue to have a significant impact on civil engineering fields. The objective of this study is to develop STEP-based database which will be able to store and manipulate the information of steel bridges over the life cycle. In this study, there are three steps to fulfil the objective to build database and develop the application module for that data model practically and effectively To begin with, STEP methodology for a development of data model has been used for modelling data structure. And then the data model for a steel bridge's shape and structural analysis information has been made up by using AP203 (configuration controlled design) and AP203 (composite and metallic structural analysis and related design) which are the international standard in STEP Lastly, the application module for an access to information of steel bridges has been developed by means of already made database. This study show efficiently the prototype of developing information system with the existing standard technology in civil engineering fields.

  • PDF

A Case Study for the Concrete Caisson Crack Failure Using Finite Element Analysis (유한요소 해석을 통한 케이슨 균열발생의 원인규명 사례연구)

  • 박용걸
    • Computational Structural Engineering
    • /
    • v.7 no.4
    • /
    • pp.119-126
    • /
    • 1994
  • One of the most serious promblems in the concrete structures is cracking failure due to the several complicated reasons. These cracks are not only serious structural problems, but also lower the durability and deteriorate the structural shape, which cause the reinforcement rust in the open air and sea water. An analytical study was undertaken to investigate the cracking problems in the one of concrete caissons using Finite Element Method. This caisson is modelled with plate elements and truss elements for the walls and lifting cables respectively and analyzed in the every construction stages, such as lifting, moving, sinking, filling, towing, setting, and proposed reasonable construction methods for the concrete caisson structures.

  • PDF

On the fundamental period of infilled RC frame buildings

  • Asteris, Panagiotis G.;Repapis, Constantinos C.;Cavaleri, Liborio;Sarhosis, Vasilis;Athanasopoulou, Adamantia
    • Structural Engineering and Mechanics
    • /
    • v.54 no.6
    • /
    • pp.1175-1200
    • /
    • 2015
  • This paper investigates the fundamental period of vibration of RC buildings by means of finite element macro-modelling and modal eigenvalue analysis. As a base study, a number of 14-storey RC buildings have been considered "according to code designed" and "according to code non-designed". Several parameters have been studied including the number of spans; the span length in the direction of motion; the stiffness of the infills; the percentage openings of the infills and; the location of the soft storeys. The computed values of the fundamental period are compared against those obtained from seismic code and equations proposed by various researchers in the literature. From the analysis of the results it has been found that the span length, the stiffness of the infill wall panels and the location of the soft storeys are crucial parameters influencing the fundamental period of RC buildings.

Prediction of solute rejection and modelling of steady-state concentration polarisation effects in pressure-driven membrane filtration using computational fluid dynamics

  • Keir, Greg;Jegatheesan, Veeriah
    • Membrane and Water Treatment
    • /
    • v.3 no.2
    • /
    • pp.77-98
    • /
    • 2012
  • A two-dimensional (2D) steady state numerical model of concentration polarisation (CP) phenomena in a membrane channel has been developed using the commercially available computational fluid dynamics (CFD) package CFX (Ansys, Inc., USA). The model incorporates the transmembrane pressure (TMP), axially variable permeate flux, variable diffusivity and viscosity, and osmotic pressure effects. The model has been verified against several benchmark analytical and empirical solutions from the membrane literature. Additionally, the model is able to predict the rejection of an arbitrary solute by the membrane using a pore model, given some basic knowledge of the geometry of the solute molecule or particle, and the membrane pore geometry. This allows for predictive design of membrane systems without experimental determination of the membrane rejection for the specified operating conditions. A demonstration of the model is presented against experimental results for two uncharged test compounds (sucrose and PEG1000) from the literature. The model will be extended to incorporate charge effects, transient simulations, three-dimensional (3D) geometry and turbulent effects in future work.

Gaussian Approximation of Stochastic Lanchester Model for Heterogeneous Forces (혼합 군에 대한 확률적 란체스터 모형의 정규근사)

  • Park, Donghyun;Kim, Donghyun;Moon, Hyungil;Shin, Hayong
    • Journal of Korean Institute of Industrial Engineers
    • /
    • v.42 no.2
    • /
    • pp.86-95
    • /
    • 2016
  • We propose a new approach to the stochastic version of Lanchester model. Commonly used approach to stochastic Lanchester model is through the Markov-chain method. The Markov-chain approach, however, is not appropriate to high dimensional heterogeneous force case because of large computational cost. In this paper, we propose an approximation method of stochastic Lanchester model. By matching the first and the second moments, the distribution of each unit strength can be approximated with multivariate normal distribution. We evaluate an approximation of discrete Markov-chain model by measuring Kullback-Leibler divergence. We confirmed high accuracy of approximation method, and also the accuracy and low computational cost are maintained under high dimensional heterogeneous force case.

Computational continuum modelling to analysis the dynamic and static stability of a cantilever nano-scale system

  • Jiangjiang Li
    • Advances in Computational Design
    • /
    • v.8 no.1
    • /
    • pp.77-96
    • /
    • 2023
  • Calculating size-dependent mechanical properties of the nano-scale materials usually involves cumbersome numerical and theoretical works. In this paper, we aim to present a closed-form relation to calculate the length-dependent Young's modulus of carbon nanotubes (CNTs) based on nonlocal elasticity theory. In this regard, a single wall carbon nanotube (SWCNT) is considered as a rod structure and the governing nonlocal equations are developed under uniaxial tensile load. The equations are solved using analytical methods and strain distribution, total displacement and the size-dependent equivalent Young's modulus are obtained. Further, the results are compared with the molecular dynamics results from the literature. The outcome indicates that the calculated relations are coincident with the molecular dynamics results.

Inflow Conditions for Modelling the Neutral Equilibrium ABL Based on Standard k-ε Model

  • Jinghan Wang;Chao Li;Yiqing Xiao;Jinping ou
    • International Journal of High-Rise Buildings
    • /
    • v.11 no.4
    • /
    • pp.331-346
    • /
    • 2022
  • Reproducing the horizontally homogeneous atmospheric boundary layer in computational wind engineering is essential for predicting the wind loads on structures. One of the important issues is to use fully developed inflow conditions, which will lead to the consistence problem between inflow condition and internal roughness. Thus, by analyzing the previous results of computational fluid dynamic modeling turbulent horizontally homogeneous atmospheric boundary layer, we modify the past hypotheses, detailly derive a new type of inflow condition for standard k-ε turbulence model. A group of remedial approaches including formulation for wall shear stress and fixing the values of turbulent kinetic energy and turbulent dissipation rate in first wall adjacent layer cells, are also derived to realize the consistence of inflow condition and internal roughness. By combing the approaches with four different sets of inflow conditions, the well-maintained atmospheric boundary layer flow verifies the feasibility and capability of the proposed inflow conditions and remedial approaches.

MODFLOW or FEFLOW: A Case Study of Groundwater Model Selection for the Upper Waikato Catchment, New Zealand

  • Weir, Julian;Moore, Dr Catherine;Hadfield, John
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2011.05a
    • /
    • pp.14-14
    • /
    • 2011
  • Groundwater in the Waikatoregion is a valuable resource for agriculture, water supply, forestry and industries. The 434,000 ha study area comprises the upper Waikato River catchment from the outflow of Lake Taupo (New Zealand's largest lake) through to Lake Karapiro (a man-made hydro lake with high recreational value) (Figure 1). Water quality in the area is naturally high. However, there are indications that this quality is deteriorating as a result of land use intensification and deforestation. Compounding this concern for decision makers is the lag time between land use changes and the realisation of effects on groundwater and surface water quality. It is expected that the effects of land use changes have not yet fully manifested, and additional intensification may take decadesto fully develop, further compounding the deterioration. Consequently, Environment Waikato (EW) have proposed a programme of work to develop a groundwater model to assist managing water quality and appropriate policy development within the catchment. One of the most important and critical decisions of any modelling exercise is the choice of the modelling platform to be used. It must not inhibit future decision making and scenario exploration and needs to allow as accurate representation of reality as feasible. With this in mind, EW requested that two modelling platforms, MODFLOW/MT3DMS and FEFLOW, be assessed for their ability to deliver the long-term modelling objectives for this project. The two platforms were compared alongside various selection criteria including complexity of model set-up and development, computational burden, ease and accuracy of representing surface water-groundwater interactions, precision in predictive scenarios and ease with which the model input and output files could be interrogated. This latter criteria is essential for the thorough assessment of predictive uncertainty with third-party software, such as PEST. This paper will focus on the attributes of each modelling platform and the comparison of the two approaches against the key criteria in the selection process. Primarily due to the ease of handling and developing input files and interrogating output files, MODFLOW/MT3DMS was selected as the preferred platform. Other advantages and disadvantages of the two modelling platforms were somewhat balanced. A preliminary regional groundwater numerical model of the study area was subsequently constructed. The model simulates steady state groundwater and surface water flows using MODFLOW and transient contaminant transport with MT3DMS, focussing on nitrate nitrogen (as a conservative solute). Geological information for this project was provided by GNS Science. Professional peer review was completed by Dr. Vince Bidwell (of Lincoln Environmental).

  • PDF