Acknowledgement
This research has received support from the Shenzhen Knowledge Innovation Program (No. JCYJ2019080614 5216643) and the National Natural Science Foundation of China (51778200), all of which are gratefully acknowledged.
References
- Balogh, M., Parente, A., 2015. Realistic boundary conditions for the simulation of atmospheric boundary layer flows using an improved k-ε model. J. Wind Eng. Ind. Aerod. 144, 183-190. https://doi.org/10.1016/j.jweia.2015.01.010
- Balogh, M., Parente, A., Benocci, C., 2012. RANS simulation of ABL flow over complex terrains applying an Enhanced k-ε model and wall function formulation: Implementation and comparison for fluent and OpenFOAM. J. Wind Eng. Ind. Aerod. 104-106, 360-368. https://doi.org/10.1016/j.jweia.2012.02.023
- Blocken, B., Carmeliet, J., Stathopoulos, T., 2007. CFD evaluation of wind speed conditions in passages between parallel buildings-effect of wall-function roughness modifications for the atmospheric boundary layer flow. J. Wind Eng. Ind. Aerod. 95, 941-962. https://doi.org/10.1016/j.jweia.2007.01.013
- Blocken, B., Stathopoulos, T., Carmeliet, J., 2007. CFD simulation of the atmospheric boundary layer: wall function problems. Atmos. Environ. 41, 238-252. https://doi.org/10.1016/j.atmosenv.2006.08.019
- Blocken, B., Stathopoulos, T., van Beeck, J.P.A.J., 2016. Pedestrian-level wind conditions around buildings: Review of wind-tunnel and CFD techniques and their accuracy for wind comfort assessment. Build. Environ. 100, 50-81. https://doi.org/10.1016/j.buildenv.2016.02.004
- Cai, X., Huo, Q., Kang, L., Song, Y., 2014. Equilibrium Atmospheric Boundary-Layer Flow: Computational Fluid Dynamics Simulation with Balanced Forces. Bound.-Lay. Meteorol. 152, 349-366. https://doi.org/10.1007/s10546-014-9928-0
- Gorle, C., van Beeck, J., Rambaud, P., Van Tendeloo, G., 2009. CFD modelling of small particle dispersion: The influence of the turbulence kinetic energy in the atmospheric boundary layer. Atmos. Environ. 43, 673-681. https://doi.org/10.1016/j.atmosenv.2008.09.060
- Hargreaves, D.M., Wright, N.G., 2007. On the use of the k-model in commercial CFD software to model the neutral atmospheric boundary layer. J. Wind Eng. Ind. Aerod. 95, 355-369. https://doi.org/10.1016/j.jweia.2006.08.002
- Hu, P., Li, Y., Cai, C.S., Liao, H., Xu, G.J., 2013. Numerical simulation of the neutral equilibrium atmospheric boundary layer using the SST k-ω turbulence model. Wind Struct. 17, 87-105. https://doi.org/10.12989/was.2013.17.1.087
- Jones, W.P., Launder, B.E., 1972. The prediction of laminarization with a two-equation model of turbulence. Int. J. Heat Mass Tran. 15, 301-314. https://doi.org/10.1016/0017-9310(72)90076-2
- Juretic, F., Kozmar, H., 2013. Computational modeling of the neutrally stratified atmospheric boundary layer flow using the standard k-ε turbulence model. J. Wind Eng. Ind. Aerod. 115, 112-120. https://doi.org/10.1016/j.jweia.2013.01.011
- Juretic, F., Kozmar, H., 2014. Computational modeling of the atmospheric boundary layer using various two-equation turbulence models. Wind Struct. 19, 687-708. https://doi.org/10.12989/was.2014.19.6.687
- Kader, B.A., 1981. Temperature and concentration profiles in fully turbulent boundary layers. Int. J. Heat Mass Tran. 24, 1541-1544. https://doi.org/10.1016/0017-9310(81)90220-9
- Launder, B.E., Spalding, D.B., 1974. The numerical computation of turbulent flows. Comput. Method. Appl. M. 3, 269-289. https://doi.org/10.1016/0045-7825(74)90029-2
- Longo, R., Ferrarotti, M., Sanchez, C.G., Derudi, M., Parente, A., 2017. Advanced turbulence models and boundary conditions for flows around different configurations of ground-mounted buildings. J. Wind Eng. Ind. Aerod. 167, 160-182. https://doi.org/10.1016/j.jweia.2017.04.015
- O' Sullivan, J.P., Archer, R.A., Flay, R.G.J., 2011. Consistent boundary conditions for flows within the atmospheric boundary layer. J. Wind Eng. Ind. Aerod. 99, 65-77. https://doi.org/10.1016/j.jweia.2010.10.009
- Parente, A., Gorle, C., van Beeck, J., Benocci, C., 2011a. A Comprehensive Modelling Approach for the Neutral Atmospheric Boundary Layer: Consistent Inflow Conditions, Wall Function and Turbulence Model. Bound.-Lay. Meteorol. 140, 411-428. https://doi.org/10.1007/s10546-011-9621-5
- Parente, A., Gorle, C., van Beeck, J., Benocci, C., 2011b. Improved k-ε model and wall function formulation for the RANS simulation of ABL flows. J. Wind Eng. Ind. Aerod. 99, 267-278. https://doi.org/10.1016/j.jweia.2010.12.017
- Peralta, C., Nugusse, H., Kokilavani, S.P., Schmidt, J., Stoevesandt, B., 2014. Validation of the simpleFoam (RANS) solver for the atmospheric boundary layer in complex terrain. EDP Sciences,
- Richards, P.J., Hoxey, R.P., 1993. Appropriate Engineering Boundary Conditions For Computational Wind Models Using The k-ε Turbulence Model. J. Wind Eng. Ind. Aerod. 145-153.
- Richards, P.J., Norris, S.E., 2011. Appropriate boundary conditions for computational wind engineering models revisited. J. Wind Eng. Ind. Aerod. 99, 257-266. https://doi.org/10.1016/j.jweia.2010.12.008
- Richards, P.J., Norris, S.E., 2015. Appropriate boundary conditions for a pressure driven boundary layer. J. Wind Eng. Ind. Aerod. 142, 43-52. https://doi.org/10.1016/j.jweia.2015.03.003
- Riddle, A., Carruthers, D., Sharpe, A., McHugh, C., Stocker, J., 2004. Comparisons between FLUENT and ADMS for atmospheric dispersion modelling. Atmos. Environ. 38, 1029-1038. https://doi.org/10.1016/j.atmosenv.2003.10.052
- Sumner, J., Masson, C., 2012. k-ε simulations of the neutral atmospheric boundary layer: analysis and correction of discretization errors on practical grids. Int. J. Numer. Meth. Fl. 70, 724-741. https://doi.org/10.1002/fld.2709
- Wilcox, D.C., 1998. Turbulence modeling for CFD. DCW industries La Canada, CA,
- Yan, B.W., Li, Q.S., He, Y.C., Chan, P.W., 2015. RANS simulation of neutral atmospheric boundary layer flows over complex terrain by proper imposition of boundary conditions and modification on the k-ε model. Environ. Fluid Mech. 16, 1-23.
- Yang, W., Quan, Y., Jin, X., Tamura, Y., Gu, M., 2008. Influences of equilibrium atmosphere boundary layer and turbulence parameter on wind loads of low-rise buildings. J. Wind Eng. Ind. Aerod. 96, 2080-2092. https://doi.org/10.1016/j.jweia.2008.02.014
- Yang, Y., Gu, M., Chen, S., Jin, X., 2009. New inflow boundary conditions for modelling the neutral equilibrium atmospheric boundary layer in computational wind engineering. J. Wind Eng. Ind. Aerod. 97, 88-95. https://doi.org/10.1016/j.jweia.2008.12.001
- Yang, Y., Xie, Z., Gu, M., 2017. Consistent inflow boundary conditions for modelling the neutral equilibrium atmospheric boundary layer for the SST k-omega model. Wind Struct. 24, 465-480. https://doi.org/10.12989/was.2017.24.5.465
- Yu, H., The, J., 2017. Simulation of gaseous pollutant dispersion around an isolated building using the k-ω SST (shear stress transport) turbulence model. J. Air Waste Manage. 67, 517-536. https://doi.org/10.1080/10962247.2016.1232667