DOI QR코드

DOI QR Code

Inflow Conditions for Modelling the Neutral Equilibrium ABL Based on Standard k-ε Model

  • Published : 2022.12.01

Abstract

Reproducing the horizontally homogeneous atmospheric boundary layer in computational wind engineering is essential for predicting the wind loads on structures. One of the important issues is to use fully developed inflow conditions, which will lead to the consistence problem between inflow condition and internal roughness. Thus, by analyzing the previous results of computational fluid dynamic modeling turbulent horizontally homogeneous atmospheric boundary layer, we modify the past hypotheses, detailly derive a new type of inflow condition for standard k-ε turbulence model. A group of remedial approaches including formulation for wall shear stress and fixing the values of turbulent kinetic energy and turbulent dissipation rate in first wall adjacent layer cells, are also derived to realize the consistence of inflow condition and internal roughness. By combing the approaches with four different sets of inflow conditions, the well-maintained atmospheric boundary layer flow verifies the feasibility and capability of the proposed inflow conditions and remedial approaches.

Keywords

Acknowledgement

This research has received support from the Shenzhen Knowledge Innovation Program (No. JCYJ2019080614 5216643) and the National Natural Science Foundation of China (51778200), all of which are gratefully acknowledged.

References

  1. Balogh, M., Parente, A., 2015. Realistic boundary conditions for the simulation of atmospheric boundary layer flows using an improved k-ε model. J. Wind Eng. Ind. Aerod. 144, 183-190. https://doi.org/10.1016/j.jweia.2015.01.010
  2. Balogh, M., Parente, A., Benocci, C., 2012. RANS simulation of ABL flow over complex terrains applying an Enhanced k-ε model and wall function formulation: Implementation and comparison for fluent and OpenFOAM. J. Wind Eng. Ind. Aerod. 104-106, 360-368. https://doi.org/10.1016/j.jweia.2012.02.023
  3. Blocken, B., Carmeliet, J., Stathopoulos, T., 2007. CFD evaluation of wind speed conditions in passages between parallel buildings-effect of wall-function roughness modifications for the atmospheric boundary layer flow. J. Wind Eng. Ind. Aerod. 95, 941-962. https://doi.org/10.1016/j.jweia.2007.01.013
  4. Blocken, B., Stathopoulos, T., Carmeliet, J., 2007. CFD simulation of the atmospheric boundary layer: wall function problems. Atmos. Environ. 41, 238-252. https://doi.org/10.1016/j.atmosenv.2006.08.019
  5. Blocken, B., Stathopoulos, T., van Beeck, J.P.A.J., 2016. Pedestrian-level wind conditions around buildings: Review of wind-tunnel and CFD techniques and their accuracy for wind comfort assessment. Build. Environ. 100, 50-81. https://doi.org/10.1016/j.buildenv.2016.02.004
  6. Cai, X., Huo, Q., Kang, L., Song, Y., 2014. Equilibrium Atmospheric Boundary-Layer Flow: Computational Fluid Dynamics Simulation with Balanced Forces. Bound.-Lay. Meteorol. 152, 349-366. https://doi.org/10.1007/s10546-014-9928-0
  7. Gorle, C., van Beeck, J., Rambaud, P., Van Tendeloo, G., 2009. CFD modelling of small particle dispersion: The influence of the turbulence kinetic energy in the atmospheric boundary layer. Atmos. Environ. 43, 673-681. https://doi.org/10.1016/j.atmosenv.2008.09.060
  8. Hargreaves, D.M., Wright, N.G., 2007. On the use of the k-model in commercial CFD software to model the neutral atmospheric boundary layer. J. Wind Eng. Ind. Aerod. 95, 355-369. https://doi.org/10.1016/j.jweia.2006.08.002
  9. Hu, P., Li, Y., Cai, C.S., Liao, H., Xu, G.J., 2013. Numerical simulation of the neutral equilibrium atmospheric boundary layer using the SST k-ω turbulence model. Wind Struct. 17, 87-105. https://doi.org/10.12989/was.2013.17.1.087
  10. Jones, W.P., Launder, B.E., 1972. The prediction of laminarization with a two-equation model of turbulence. Int. J. Heat Mass Tran. 15, 301-314. https://doi.org/10.1016/0017-9310(72)90076-2
  11. Juretic, F., Kozmar, H., 2013. Computational modeling of the neutrally stratified atmospheric boundary layer flow using the standard k-ε turbulence model. J. Wind Eng. Ind. Aerod. 115, 112-120. https://doi.org/10.1016/j.jweia.2013.01.011
  12. Juretic, F., Kozmar, H., 2014. Computational modeling of the atmospheric boundary layer using various two-equation turbulence models. Wind Struct. 19, 687-708. https://doi.org/10.12989/was.2014.19.6.687
  13. Kader, B.A., 1981. Temperature and concentration profiles in fully turbulent boundary layers. Int. J. Heat Mass Tran. 24, 1541-1544. https://doi.org/10.1016/0017-9310(81)90220-9
  14. Launder, B.E., Spalding, D.B., 1974. The numerical computation of turbulent flows. Comput. Method. Appl. M. 3, 269-289. https://doi.org/10.1016/0045-7825(74)90029-2
  15. Longo, R., Ferrarotti, M., Sanchez, C.G., Derudi, M., Parente, A., 2017. Advanced turbulence models and boundary conditions for flows around different configurations of ground-mounted buildings. J. Wind Eng. Ind. Aerod. 167, 160-182. https://doi.org/10.1016/j.jweia.2017.04.015
  16. O' Sullivan, J.P., Archer, R.A., Flay, R.G.J., 2011. Consistent boundary conditions for flows within the atmospheric boundary layer. J. Wind Eng. Ind. Aerod. 99, 65-77. https://doi.org/10.1016/j.jweia.2010.10.009
  17. Parente, A., Gorle, C., van Beeck, J., Benocci, C., 2011a. A Comprehensive Modelling Approach for the Neutral Atmospheric Boundary Layer: Consistent Inflow Conditions, Wall Function and Turbulence Model. Bound.-Lay. Meteorol. 140, 411-428. https://doi.org/10.1007/s10546-011-9621-5
  18. Parente, A., Gorle, C., van Beeck, J., Benocci, C., 2011b. Improved k-ε model and wall function formulation for the RANS simulation of ABL flows. J. Wind Eng. Ind. Aerod. 99, 267-278. https://doi.org/10.1016/j.jweia.2010.12.017
  19. Peralta, C., Nugusse, H., Kokilavani, S.P., Schmidt, J., Stoevesandt, B., 2014. Validation of the simpleFoam (RANS) solver for the atmospheric boundary layer in complex terrain. EDP Sciences,
  20. Richards, P.J., Hoxey, R.P., 1993. Appropriate Engineering Boundary Conditions For Computational Wind Models Using The k-ε Turbulence Model. J. Wind Eng. Ind. Aerod. 145-153.
  21. Richards, P.J., Norris, S.E., 2011. Appropriate boundary conditions for computational wind engineering models revisited. J. Wind Eng. Ind. Aerod. 99, 257-266. https://doi.org/10.1016/j.jweia.2010.12.008
  22. Richards, P.J., Norris, S.E., 2015. Appropriate boundary conditions for a pressure driven boundary layer. J. Wind Eng. Ind. Aerod. 142, 43-52. https://doi.org/10.1016/j.jweia.2015.03.003
  23. Riddle, A., Carruthers, D., Sharpe, A., McHugh, C., Stocker, J., 2004. Comparisons between FLUENT and ADMS for atmospheric dispersion modelling. Atmos. Environ. 38, 1029-1038. https://doi.org/10.1016/j.atmosenv.2003.10.052
  24. Sumner, J., Masson, C., 2012. k-ε simulations of the neutral atmospheric boundary layer: analysis and correction of discretization errors on practical grids. Int. J. Numer. Meth. Fl. 70, 724-741. https://doi.org/10.1002/fld.2709
  25. Wilcox, D.C., 1998. Turbulence modeling for CFD. DCW industries La Canada, CA,
  26. Yan, B.W., Li, Q.S., He, Y.C., Chan, P.W., 2015. RANS simulation of neutral atmospheric boundary layer flows over complex terrain by proper imposition of boundary conditions and modification on the k-ε model. Environ. Fluid Mech. 16, 1-23.
  27. Yang, W., Quan, Y., Jin, X., Tamura, Y., Gu, M., 2008. Influences of equilibrium atmosphere boundary layer and turbulence parameter on wind loads of low-rise buildings. J. Wind Eng. Ind. Aerod. 96, 2080-2092. https://doi.org/10.1016/j.jweia.2008.02.014
  28. Yang, Y., Gu, M., Chen, S., Jin, X., 2009. New inflow boundary conditions for modelling the neutral equilibrium atmospheric boundary layer in computational wind engineering. J. Wind Eng. Ind. Aerod. 97, 88-95. https://doi.org/10.1016/j.jweia.2008.12.001
  29. Yang, Y., Xie, Z., Gu, M., 2017. Consistent inflow boundary conditions for modelling the neutral equilibrium atmospheric boundary layer for the SST k-omega model. Wind Struct. 24, 465-480. https://doi.org/10.12989/was.2017.24.5.465
  30. Yu, H., The, J., 2017. Simulation of gaseous pollutant dispersion around an isolated building using the k-ω SST (shear stress transport) turbulence model. J. Air Waste Manage. 67, 517-536. https://doi.org/10.1080/10962247.2016.1232667