• Title/Summary/Keyword: computational modeling

Search Result 1,872, Processing Time 0.022 seconds

Finite Element Modeling of the Rat Cervical Spine and Adjacent Tissues from MRI Data (MRI 데이터를 이용한 쥐의 경추와 인접한 조직의 유한요소 모델화)

  • Chung, Tae-Eun
    • Korean Journal of Computational Design and Engineering
    • /
    • v.17 no.6
    • /
    • pp.436-442
    • /
    • 2012
  • Traumatic loading during car accidents or sports activities can lead to cervical spinal cord injury. Experiments in spinal cord injury research are mainly carried out on rabbit or rat. Finite element models that include the rat cervical spinal cord and adjacent soft tissues should be developed for efficient studies of mechanisms of spinal cord injury. Images of a rat were obtained from high resolution MRI scanner. Polygonal surfaces were extracted structure by structure from the MRI data using the ITK-SNAP volume segmentation software. These surfaces were converted to Non-uniform Rational B-spline surfaces by the INUS Rapidform rapid prototyping software. Rapidform was also used to generate a thin shell surface model for the dura mater which sheathes the spinal cord. Altair's Hypermesh pre-processor was used to generate finite element meshes for each structure. These processes in this study can be utilized in modeling of other biomedical tissues and can be one of examples for reverse engineering on biomechanics.

Design Data Exchange in an Integrated Architectural Design Environment: A Product Model Approach Using STEP Technology (통합 건축 설계 환경에서의 설계 정보의 교환에 관한 연구: STEP을 이용한 Product Modeling 접근 방법)

  • 김인한;김유진
    • Korean Journal of Computational Design and Engineering
    • /
    • v.2 no.1
    • /
    • pp.44-52
    • /
    • 1997
  • A design process is difficult to describe comprehensively because a design problem has a multi-disciplinary nature and the design itself evolves as solutions are attempted by the designer. The process of design has been investigated in this paper with the purpose of characterizing the role that a system of this kind may have. In defining the system, an approach has been used that privileges the relationships with the existing CAD tools based on data exchange standards in course of definition today. Integrated design environment normally consists of a centralized data model a data management system and a set of CAD tools. In this study, all further investigations are directed towards the data management system, as one of the main components of the proposed environment. Moreover, product modeling, as a prerequisite for the data management core, is taken into special consideration.

  • PDF

Decomposition-Based Simplification of Machined Part in Solid Model (볼륨분해를 이용한 절삭가공부품 솔리드 모델의 단순화)

  • Woo, Yonn-Hwan
    • Korean Journal of Computational Design and Engineering
    • /
    • v.12 no.2
    • /
    • pp.101-108
    • /
    • 2007
  • As 3D solid modeling has been widely used in designing products, solid models of the products are directly used in various applications such as engineering analysis and process planing. However, the fully-detailed solid models may not be necessary in some application. For example, it is often more efficient to use simplified model of part of engineering analysis. Generation of mesh for the complex original model requires a quite amount of time, and the consequence of finite element analysis may not be desirable due to small and detailed geometry in the model. In this paper, a method to simplify solid models of machined part is presented. This method decomposes the delta volume of machined part, and uses the decomposed volumes to simplify the solid model. Since this method directly recognizes the features to be removed from the final model, it is independent of not only design features of specific CAD system, but also designer's design practice of design sequences.

On the Virtual Clay Modeling Using a Force Reflecting Haptic Manipulator (반발력을 생성하는 햅틱장비를 이용한 가상의 점토 모델링에 관한 연구)

  • 채영호
    • Korean Journal of Computational Design and Engineering
    • /
    • v.4 no.1
    • /
    • pp.12-18
    • /
    • 1999
  • A deformable non-Uniform Rational B-Spline (NURBS) based volume is programed for the force reflecting exoskeleton haptic device. In this work, a direct free form deformation (DFFD) technique is applied for the realistic manipulation. In order to implement the real-time deformation, a nodal mapping technique is used to connect points on the virtual object with the NURBS volume. This geometric modeling technique is ideally incorporated with the force reflecting haptic device as a virtual interface. The results in this work introduce details for the complete set-up for the realistic virtual clay modeling task with force feedback. The force reflecting exoskeleton haptic manipulator, coupled with a supporting PUMA 560 manipulator and the virtual clay model are integrated with the graphics display, and results show that the force feedback from the realistic physically based virtual environment can greately enhance the sense of immersion.

  • PDF

Integration of Geometrically Exact Shell Finite Element With Trimmed Surface Modeling base on the NURBS (기하학적으로 정확한 셀 유한요소와 NURBS기반의 Trimmed Surface 모델링과의 연동)

  • Choi Jin-Bork;Roh Hee-Yuel;Cho Maeng-Hyo
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2006.04a
    • /
    • pp.794-801
    • /
    • 2006
  • The linkage framework of geometric modeling and analysis based on the NURBS technology is developed in this study. The NURBS surfaces are generated by interpolating the given set of data points or by extracting the necessary information to construct the NURBS surface from the IGES format file which is generated by the commercial CAD systems in the present study. Numerical examples shows the rate of displacement convergence according to the paramterization methods of the NURBS surface. NURBS can generate quadric surfaces in an exact manner. It is the one of the advantages of the NURBS. A trimmed NURBS surface that is often encountered in the modeling process of the CAD systems is also presented in the present study. The performance of the developed geometrically exact shell element integrated with the exact geometric representations by the NURBS equation is compared to those of the previous reported FE shell elements in the selected benchmark problems.

  • PDF

Transonic Flutter Analysis Using Euler Equation and Reduced order Modeling Technique (오일러 방정식 및 저차모델링 기법을 활용한 천음속 플러터 해석)

  • Kim, Dong-Hyun;Kim,, Yo-Han;Kim, Myung-Hwan;Ryu, Gyeong-Joong;Hwang, Mi-Hyun
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2011.04a
    • /
    • pp.339-344
    • /
    • 2011
  • In the past much effort has been made to utilize advanced computational fluid dynamic (CFD) programs for aeroelastic simulations and analysis. However, it is limited in the field of unsteady aeroelasticity due to enormous size of computer memory and unreasonably long CPU time. Recently, AAEMS(Aerodynamics is Aeroelasticity minus Structure) was developed for linear time-invariant, coupled fluid-structure systems. In this paper, to demonstrate further the efficiency and accuracy of the new model reduction method, we successfully examine AGARD 445.6 wing modeled by FLUENT CFD, FSIPRO3D and NASTRAN FEM(Finite Element Method) programs. Using the ROM(Reduced Order Modeling) one can predict flutter boundary as a function of the dynamic pressure.

  • PDF

Modeling of Building Structure for an Integrated Structural Design (건축구조설계 통합시스템을 위한 건축구조물의 모델링)

  • 김치경;홍성묵
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 1993.04a
    • /
    • pp.71-78
    • /
    • 1993
  • This study serves as a part for the development of an integrated structural design system. Efficient data management is essential in engineering computer applications where the volume of data is large and the data flow and sharing are required. From a viewpoint of computer application, building structures can be considered to be a mass ofdata. The centralized database(CDB) and database management system frees the application from the details of managing data storage and retrieval while providing a common pool of information. For this, systematic information analysis and modeling have to be preceded. In this paper we described the result of database modeling of building structure.

  • PDF

Application on the Modeling Rusults of GPR Wave Propagation through Concrete Specimens for Rebar Detection In Concrete Specimens (전자파 모델링을 이용한 콘크리트 내 철근탐사)

  • 남국광;임홍철
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2001.10a
    • /
    • pp.135-140
    • /
    • 2001
  • The radar method is becoming one of the major nondestructive testing (NDT) techniques for concrete structures. Numerical modeling of electromagnetic wave is needed to analyze radar measurement results and to study the influence of measurement parameters on the radar measurements. Finite difference-time domain (FD-TD) method is used to simulate electromagnetic wave propagation through concrete specimens. In the experiments, three concrete specimens are made with the dimensions of 100 cm (length) x 100 cm (wideth) x 14 cm (depth). Three specimens had a Dl6 steel bar at 8, 10, 12 cm depth.

  • PDF

Autonomous Animated Robots

  • Yamamoto, Masahito;Iwadate, Kenji;Ooe, Ryosuke;Suzuki, Ikuo;Furukawa, Masashi
    • International Journal of CAD/CAM
    • /
    • v.9 no.1
    • /
    • pp.85-91
    • /
    • 2010
  • In this paper, we demonstrate an autonomous design of motion control of virtual creatures (called animated robots in this paper) and develop modeling software for animated robots. An animated robot can behave autonomously by using its own sensors and controllers on three-dimensional physically modeled environment. The developed software can enable us to execute the simulation of animated robots on physical environment at any time during the modeling process. In order to simulate more realistic world, an approximate fluid environment model with low computational costs is presented. It is shown that a combinatorial use of neural network implementation for controllers and the genetic algorithm (GA) or the particle swarm optimization (PSO) is effective for emerging more realistic autonomous behaviours of animated robots.

Variational surface design under normal field guidance

  • Wu, Weidong;Yang, Xunnian
    • Journal of Computational Design and Engineering
    • /
    • v.2 no.3
    • /
    • pp.129-136
    • /
    • 2015
  • This paper proposes a novel method for shape design of a Bezier surface with given boundary curves. The surface is defined as the minimizer of an extended membrane functional or an extended thin plate functional under the guidance of a specified normal field together with an initial prescribed surface. For given boundary curves and the guiding normal field, the free coefficients of a Bezier surface are obtained by solving a linear system. Unlike previous PDE based surface modeling techniques which construct surfaces just from boundaries, our proposed method can be used to generate smooth and fair surfaces that even follow a specified normal field. Several interesting examples are given to demonstrate the applications of the proposed method in geometric modeling.