
International Journal of CAD/CAM Vol. 9, No. 1, pp. 85~91 (2009)

Autonomous Animated Robots

Masahito Yamamoto, Kenji Iwadate, Ryosuke Ooe, Ikuo Suzuki, and Masashi Furukawa

Graduate School of Information Science and Technology

Abstract : In this paper, we demonstrate an autonomous design of motion control of virtual creatures (called animated robots
in this paper) and develop modeling software for animated robots. An animated robot can behave autonomously by using its
own sensors and controllers on three-dimensional physically modeled environment. The developed software can enable us to
execute the simulation of animated robots on physical environment at any time during the modeling process. In order to
simulate more realistic world, an approximate fluid environment model with low computational costs is presented. It is shown
that a combinatorial use of neural network implementation for controllers and the genetic algorithm (GA) or the particle
swarm optimization (PSO) is effective for emerging more realistic autonomous behaviours of animated robots.

Keywords : physics modeling, artificial life, computer animation, automated motion design

1. Introduction

Since Sims’s seminal work of virtual creatures, research

interests in the evolution of morphologies and controllers

of three-dimensional virtual creatures on physically

modeled environment have been grown [7]. Due to the

recent availability of high performance computers, some

physics engines can be easily used. Physics engines can

simulate a three-dimensional physical environment including

the gravity, the friction forces and the collision detections

of objects, based on the differential equations. However, it

is still difficult to design morphologies and controllers

of virtual creatures simultaneously. Thus, relatively simple

and unrealistic creatures consist of some spheres or

some boxes are focused in the previous works [1, 3, 4, 8].

In the field of computer graphics and animation design,

an autonomous motion design is one of recent hot

topics. The technique of the creation of CG crowd is

actually used in some major films [6]. It will be more

valuable for designers to create motions of more realistic

virtual creatures autonomously, because it is a time

consuming task to create motions manually by using

motion captures.

 In this paper, we present more complicated and more

realistic autonomous virtual creatures (called animated

robots in this paper) and develop design software for

creating them. An animated robot can behave autonomously

by using its own sensors and controllers on three-

dimensional physically modeled environment. The design

software enables us not only to design three-dimensional

animated robots consists of rigid objects, elastic objects

with various joints and controllers, but also to simulate

the behaviour of designed animated robots on the

physical environment instantly at any time during the

design process. In order to simulate more realistic

world, an approximate fluid environment model is

presented, which enables us to implement virtual fluid

environments with low computational costs. In the

developed software, designed animated robots may have

sensors and controllers with neural networks and these

controllers can be evolved by means of the genetic

algorithm (GA) or the particle swarm optimization (PSO).

In this paper, we demonstrate that the salamander model

can obtain an autonomous both walking behaviors and

swimming behaviors on virtual land and water environments.

Furthermore, in order to show the validity of the

approximate fluid environment, the flight control task

of the helicopter model is demonstrated.

2. Animated Robot

An animated robot is a virtual object on three-

dimensional physically modeled environment. The animated

robot can behave autonomously by controlling its

actuators based on its sensor inputs such as the distance

and the angle of the light sources, other objects and so

on. We can design an animated robot by conjugating

some primitive objects such as spheres, cuboids, meshed

spheres and meshed cuboids. Figure 1 shows an

example of our designed gold beetle and dragon fly robots.

In our designed software, not only rigid objects such

as shown in Fig. 1, but also elastic objects can be

designed. Elastic objects are 3D physics models based

on the spring and the math objects (very small rigid

objects). An arbitrary shape of an animated robot can be

designed by using some rigid and elastic (spring) objects.

Particularly, in the process of designing an elastic

animated robot, it is very important to know the

stability of the robot on the physical environment with
*Corresponding author:
E-mail: masahito@complex.eng.hokudai.ac.jp

86 International Journal of CAD/CAM Vol. 9, No. 1, pp. 85~91

gravity, frictions and collisions. By simply switching

the mode from “modeling” to “simulation” in the

software, the behaviors of designed animated robots can

be simulated. Thus we can know the behaviors of

designed anibots and the stability of it immediately.

This feature is novel and can support the modeling

process of these virtual creatures.

Figure 2 shows some typical elastic models, but an n-

hedron object (c) has unstable structure on physical

environment. In our design software, we can know such

an unstable structure during the design process.

3. Design Software

3.1 Design of Animated Robots
An animated robot consists of some rigid objects with

some joints. The structure of the robot can be stored

into the database in the form of graph structures. Nodes

in the data structure correspond to the object components

such as rigid objects and joints, and links correspond to

the joint relation between these objects.

A rigid object is a main component of animated

robots. Some primitives such as spheres, cuboids, meshed

spheres and meshed cuboids are prepared for designing

animated robots. Figure 3 shows an example of various

rigid objects.

A joint object can be used to conjugate a pair of rigid

objects. Each joint has six degrees of freedom. Optionally,

some of six degrees of freedom may not be used, i.e.,

fixed joints are implemented. An attribute of the joint

can be changed to be a flexible elastic spring based on

the spring-damper model. In this case, each joint has

some parameters, a spring factor and a damping factor, to

determine the spring strength.

Of course, designed objects can be copied and saved.

The data representing an animated robot are stored in

the XML format.

3.2 Design of Motions
In order to animate designed objects, some kinds of

sensors are prepared. In the current version of our

developing software, photo sensors and touch sensors

are implemented. However, other sensors such as image

sensors, or sonar sensors can be easily implemented.

The photo sensors can be attached to the surface of

rigid objects. Input signals from the sensors are used for

motion control.

A motion of an animated robot is created by the

rotations of joints, and expansions and contractions of

springs. Two types of motion attributes are prepared.

The first one is the attribute for a passive motion caused

by surrounding forces. The second one is the attribute

for an active motion that makes an effect with surrounding

forces to control a model. The active motion is controlled

by a neural network controller.

The user of the developed design software can switch

the mode between “modeling mode” and “simulation

mode” at any time during the design process. In the

modeling mode of our designed software, above explained

three-dimensional anibots can be easily designed as

well as the typical 3D modeling tools. In the simulation

mode, designed objects laid to the physical environment

with gravity. We adopt PhysX engines by NVIDIA

Cooperation [5]. Therefore we can know the behaviors

of designed animated robots immediately during the

modeling process. It will be very helpful for such kind

of design software for virtual creatures. Figure 4 shows

a demonstration image of the mode switching. Four

kind of objects are designed in the modeling mode (Fig.

4 (a)), and the simulation result is obtained immediately

Fig. 1. A gold beetle robot and a dragon fry robot.

Fig. 2. Design of three types of elastic robots.

Fig. 3. Various rigid objects (a) spheres (b) boxes (c) meshed
objects.

Masahito et al. Autonomous Animated Robots 87

by switching to the simulation mode (Fig. 4 (b)).

3.3 Design of Physical Environment
As described in the previous subsection, PhysX

engine is used for simulating the physical environment.

However, it is very difficult to model the fluid effects

and compute the force of drag and lift. In particular, the

particle method is very time-consuming method, thus it

is not appropriate for developing such kind of animated

robots, because many high-speed simulations are required

for optimizing their motion controllers. In this paper, an

approximate fluid environment model is proposed,

which can reduce the computational time drastically

compared with the particle method.

Suppose that there is a flat board in the uniform fluid

environment as shown in Fig. 5. If the flat board moves

with the speed v in the uniform fluid with the velocity

u, the force F of drag to the flat board is calculated in

the following equation:

(1)

where ρ is the density of the fluid, Ap is the reference

area, Cd is the drag coefficient, n is the unit vector

indicating the direction of the velocity (the negative

sign indicating the drag is opposite to that of velocity).

In order to compute the force of drag more precisely

in the case of the flat board moves and rotates, the flat

board is divided into some equal size areas and the

equation (1) is applied to each area. More complicated

meshed object can be treated in the same fashion, i.e.,

each mesh is divided into the small area and is led to

compute the force of drag. Note that the drag

coefficient is highly dependent on the size and the

shape of the whole object. In general, it is very difficult

to determine the precise values of it for any object, thus

Cd is set to 1.5 for all objects in this paper.

3.4 Optimization of Motion Control
An animated robot takes the input signals from the

environment by using its sensors and outputs the torques

to all controllers (joints) and the behavior of the robot

on the physical environment is determined as a result.

Of course, the animated robot is affected by other

objects, for example, the collisions against other objects. In

order to compute these effects, physics engines are very

useful.

According to the previous studies, an Artificial Neural

Network (ANN) is used for controlling the actuators

(joints). However the connection structure of ANN is

not limited to the feed forward network in this paper. If

random values are assigned to the weight of the neural

network, random behaviors are obtained regardless of

the input signals.

In order to acquire reasonable behaviors of animated

robots, we adopt a genetic algorithm (GA) and a particle

swarm optimization (PSO) for optimizing the weight

values of each neural controller. Combining ANN and

GA (or PSO) is a most promising approach for optimizing

this kind of motion control. The obtained behaviors are

strongly depending on the predetermined fitness function.

The optimization of behaviors will be described in the

next section.

4. Design of Autonomous Behaviors

In order to make more realistic autonomous behaviors

of designed objects, the neural controllers are optimized

F
1

2
---ρApCdv

2
n–=

Fig. 4. Design mode (a) and simulation mode (b).

Fig. 5. Force of drag.

88 International Journal of CAD/CAM Vol. 9, No. 1, pp. 85~91

so as to maximize the fitness function. We present two

demonstrations for acquiring the autonomous behaviors

of animated robots.

4.1 Salamander model
First, we present a salamander model simulation. A

salamander model is designed by using our developed

modeling software by one of the authors (see Fig. 6). It

consists of 20 meshed primitives, two sensors and 13

joint controllers. The density of the model is 300 [kg/

m3]. The coefficients of static and dynamic frictions are

0.9 and 0.8, respectively. The restitution coefficient is

set to 0.3.

The objective of the salamander model is to reach the

light source put on the physical environment. The

sensor inputs are the light strength and the difference

between the sensor position and the light position. The

output torque for each controller is computed in the

following equation:

Torque i = Ri · sin(ω i t + ϕi) + Bi (2)

where Ri is an amplitude, ωi is an angular velocity, ϕi

is a phase and Bi is a bias. Although the sine function is

used for creating the cyclic forces, it may not be

essential in case that the simulation step (time interval

of sensor inputs) is relatively small.

In the GA optimization process, some parameters are

set to the values as shown in Table 1. A mutation

operation is implemented by replacing the values of

randomly selected weights to random values. A crossover

operation is executed by replacing the output neuron

and its all connecting weights with that of randomly

selected controllers of randomly selected individuals.

Fitness functions are crucial for the evolution process.

In this paper, we adopt the weighted sum function

consists of distance, energy and direction factors. If the

distance (D) from the light source to the robot is small

during one simulation, the robot obtains better fitness

values. If the energy consumption (E) is small and if the

direction difference (L) between sensors and light

source is small, the animated robot gets better fitness

values. The fitness function is as follows.

f = −aD −bE + cL (a ,b, c : constant) (3)

aD > cL > bE (4)

The direction factor (cL) is not always required, but it

may be necessary for obtaining an animal-like behavior,

because the animal tends to direct to the target.

After the evolution with 100 generations, reasonable

walking behaviors of salamander model by twisting the

body are obtained. Figure 7 shows the snapshot of the

evolved walking behaviors of the salamander model. A

swimming behavior of the salamander model is also

evolved in the water environment (data not shown).

4.2 Helicopter Flight Control
We present another demonstration of the flight

control of helicopter model in order to show the validity

of the approximate fluid environment presented in

section 3.3. The helicopter model as shown in Fig. 8 is

inspired by the sketch of Leonard da Vinci. However, it

is well known that da Vinci helicopter cannot flight stably.

First, we verify that the flight of da Vinci helicopter is

unstable in our approximate fluid environment, and

then the revised helicopter model is developed and the

flight controller is optimized by using the particle

swarm optimization (PSO) [2].

The da Vinci helicopter has the axis with the length

1.2[m] and width 0.1[m]. The wing with 0.6[m] radius

winds 1.5 rounds. The density of the axis and the wing

is 100.0 [kg/m3] and 85.5 [kg/m3], respectively.

By adding the torque to the axis of the helicopter, the

flight simulation is executed. In our simulation result,

unstable flight of the da Vinci helicopter is observed

(data not shown). Although our approximate fluid

environment model does not consider the force of lift,

the affect of wind and the noise, it is shown that our

proposed environment model is valid from the above

simulation result.

Next, we present the revised simple helicopter model

in order to enhance the flight ability of da Vinci

helicopter as shown in Fig. 9. The revised model has

two propellers that rotate to the opposite directions byFig. 6. Salamander model.

Table 1. GA Parameters for the salamander model

Population size 20

Crossover provability 0.4

Mutation provability 0.05

Masahito et al. Autonomous Animated Robots 89

giving the torque to the axis. The revised model has the

axis with the length 0.6[m] and width 0.1[m]. The wing is

the box with the size of 1.8[m] × 0.2[m] × (3.0 × 10-3)[m],

and fixed to the axis with 35o. The density of the axis

and the wing is all 100.0 [kg/m3].

The objective of the flight control is to keep the target

altitude. This task is not so difficult, but it is appropriate

for verifying that our approximate fluid environment

model is valid and the optimization method works well.

Artificial neural network (ANN) controllers are used

for determining the torque of the axis at time t. The

sensor inputs of the model are the altitude and the speed

to the vertical axis. The number of neurons in hidden

layer is 4 and the output of ANN is the torque.

The sigmoid functions f(u), g(u) for hidden layer and

output layer are calculated in the followings.

(5)

(6)

f u()
2αf

1 e
βf u–

+

------------------ αf–=

g u()
2αg

1 e
βg u–

+

------------------ αg–=

Fig. 7. Evolved walking behaviors.

Fig. 8. da Vinci helicopter model.

Fig. 9. Revised simple helicopter model.

90 International Journal of CAD/CAM Vol. 9, No. 1, pp. 85~91

Particle Swarm Optimization (PSO) is a relatively

new collective approach to optimization problems [7].

In order to optimize the torque control for keeping the

flight altitude, PSO is applied to the weights of ANN

and αf, βf, αg, βg in equation (5) and (6).

The population size of PSO is 20 and the number of

search (update) iterations is 1000. The value of inertial

constant is decreasing from 0.9 to 0.4 linearly and other

coefficients are set to 2.0.

The fitness function f is given by the following

equations:

(7)

(8)

where h is the altitude of the helicopter, and T is the

simulation step (T = 1800).

Figure 10 shows the transition of fitness values in the

search iterations. From this figure, we can verify that

PSO works well, because the maximum fitness value is

increasing as the generation proceeds.

Figure 11 shows the transition of altitude of the

helicopter in some typical generations. In generation

15, the descending behavior is observed for the first

time. As the generation is proceeding to 1000, an optimal

behavior is obtained.

Therefore, it is shown from these experiments that

our approximate fluid environment model works well

although its proof is not given.

5. Concluding Remarks

In this paper, we present modeling software for

designing animated robots that can behave autonomously

on 3D physical environments. The main feature of our

developing software is to support users to design animated

robots by switching between the design mode and

simulation mode at any time. Also an approximate fluid

environment model is presented in order to simulate the

water or the air environments with low computational

costs. The neural network of a designed animated robot

is optimized and reasonable behaviors of the robot are

obtained.

References

[1] Chaumont, N., Egli, R. and Adami, C. (2007), Evolving
Virtual Creatures and Catapults, Artificial Life, 13(2), 139-
157

[2] Kennedy, J. and Eberhart, R. (1995), Particle Swarm
Optimization, IEEE International Conference on Neural
Networks, 1942-1948

[3] Kim, K. J. and Cho, S. B. (2006), A Comprehensive
Overview of the Applications of Artificial Life, Artificial
Life, Vol. 12(1), 153-182

[4] Masry, M. and Lipson, H. (2005), A Sketch-Based
Interface for Iterative Design and Analysis of 3D Objects,
Proceedings of Eurographics workshop on Sketch-Based
Interfaces, 109-118.

[5] NVIDIA Cooperation (November 30, 2009), http://
www.nvidia.com/

[6] Reynolds, C. W. (1987), Flocks, Herds, and Schools: A
Distributed Behavioral Model, Computer Graphics, Vol.
21(4), 22-34.

[7] Sims, K. (1994), Evolving Virtual Creatures, Proceedings
of the 21st Annual Conference on Computer Graphics and
Interactive Techniques, 15-22.

[8] Sugiyama, Y. and Hirai, S. (2006), Crawling and Jumping
by a Deformable Robot, International Journal of Robotics
Research, Vol. 25, 603-620.

f Vt

t 1=

T

∑=

Vt

1

1 20 h –+()2
------------------------------ h 2≥()

 0 otherwise()⎩
⎪
⎨
⎪
⎧

=

Fig. 10. Fitness values in the search process.

Fig. 11. Obtained behavior of the helicopter model in typical
generations.

Masahito et al. Autonomous Animated Robots 91

Masahito Yamamoto He is an Associate Professor in
Graduate School of Science and Technology, Hokkaido
University, Japan. He received a Ph. D. from Hokkaido
University in 1996. His current research interests include
evolutionary creations of autonomous intelligent virtual creatures,
an analysis of complex networks and large-scale optimizations.

Kenji Iwadate He is a Ph. D. candidate of Graduate School
of Information Science and Technology, Hokkaido University,
Japan. He is also an affiliate of the Japan Society for Precision
Engineering.

Ryosuke Ooe He is a student in the master's program of
Graduate School of Information Science and Technology,
Hokkaido University, Japan. He received his BSc at Hokkaido
University in 2009. His research interests include a computer
simulation of flying creatures.

Ikuo Suzuki He is an Assistant Professor in Graduate School
of Information Science and Technology, Hokkaido University,
Japan. He received a Ph.D. in engineering from Hokkaido
University in 2004. His current research interests include
Complex engineering, Computer graphics and Computer
animation.

Masashi Furukawa He received the B.S and M.S degrees
from Hokkaido University in 1971 and 1973 respectively, and
received Dr. of Engineering from Hokkaido University in 1981.
He was the research associate, associate professor, and
professor of Asahikawa National College of Technology from
1973 to 2006. He has been a professor of Hokkaido University
since 2006. He was employed as the NSF research associate at
Cornell University in US in 1976 - 1977. Also, He was the
visiting professor of University of East Anglia in UK in 1981-
1982. He was engaged in the development of 3D CAD system
in 1971 - 1986. Now, his research interest is the complex
network, A-life, and meta-heuristics.

Masahito Yamamoto Kenji Iwadate Ryosuke Ooe

Ikuo Suzuki Masashi Furukawa

