• Title/Summary/Keyword: computational integral imaging reconstruction

Search Result 53, Processing Time 0.042 seconds

Improved Viewing Quality of 3-D Images in Computational Integral Imaging Reconstruction Based on Round Mapping Model

  • Shin, Dong-Hak;Kim, Nam-Woo;Yoo, Hoon;Lee, Joon-Jae;Lee, Byoung-Ho;Kim, Eun-Soo
    • ETRI Journal
    • /
    • v.29 no.5
    • /
    • pp.649-654
    • /
    • 2007
  • In this paper, we propose a computational integral imaging reconstruction (CIIR) method using a round mapping model to improve the viewing quality of 3-D images. The proposed CIIR method can overcome the problem of non-uniformly reconstructed images caused by the conventional method. To show the usefulness of proposed method, some experiments are carried out and the results are presented.

  • PDF

Computational integral imaging reconstruction method using round-type mapping model (원형 매핑 모델을 사용하는 컴퓨터 직접 영상 재생 방식)

  • Sin, Dong-Hak;Kim, Nam-Woo;Lee, Jun-Jae;Lee, Byeong-Guk
    • Proceedings of the Optical Society of Korea Conference
    • /
    • 2007.07a
    • /
    • pp.259-260
    • /
    • 2007
  • In this paper, we propose a novel computational integral imaging reconstruction (CIIR) method using round-type mapping model. Proposed CIIP method can overcome problems of non-uniformly reconstructed images caused from the conventional method and improve the resoulution of 3-D images. To show the usefulness of the proposed method, both computational experiment and optical experiment are carried out and their results are presented.

  • PDF

Nonlinear 3D image correlator using computational integral imaging reconstruction method (컴퓨터 집적 영상 복원 방법을 이용한 비선형 3D 영상 상관기)

  • Shin, Dong-Hak;Hong, Seok-Min;Kim, Kyoung-Won;Lee, Byung-Gook
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2012.05a
    • /
    • pp.155-157
    • /
    • 2012
  • In this paper, we propose a nonlinear 3D image correlator using computational reconstruction of 3D images based on integral imaging. In the proposed method, the elemental images for reference 3D object and target 3D object are recorded through the lens array. The recorded elemental images are reconstructed as reference plane image and target plane images using the computational integral imaging reconstruction algorithm and the nonolinear correlation between them is performed for object recognition. To show the usefulness of the proposed method, the preliminary experiments are carried out and the experimental results are presented compared with the conventional results.

  • PDF

Three-Dimensional Automatic Target Recognition System Based on Optical Integral Imaging Reconstruction

  • Lee, Min-Chul;Inoue, Kotaro;Cho, Myungjin
    • Journal of information and communication convergence engineering
    • /
    • v.14 no.1
    • /
    • pp.51-56
    • /
    • 2016
  • In this paper, we present a three-dimensional (3-D) automatic target recognition system based on optical integral imaging reconstruction. In integral imaging, elemental images of the reference and target 3-D objects are obtained through a lenslet array or a camera array. Then, reconstructed 3-D images at various reconstruction depths can be optically generated on the output plane by back-projecting these elemental images onto a display panel. 3-D automatic target recognition can be implemented using computational integral imaging reconstruction and digital nonlinear correlation filters. However, these methods require non-trivial computation time for reconstruction and recognition. Instead, we implement 3-D automatic target recognition using optical cross-correlation between the reconstructed 3-D reference and target images at the same reconstruction depth. Our method depends on an all-optical structure to realize a real-time 3-D automatic target recognition system. In addition, we use a nonlinear correlation filter to improve recognition performance. To prove our proposed method, we carry out the optical experiments and report recognition results.

Resolution improvement of 3D images in plane-based computational integral imaging reconstruction technique (평면기반 컴퓨터 집적 영상 재생 방법에서 3차원 영상의 해상도 개선)

  • Shin, Dong-Hak
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.11 no.10
    • /
    • pp.1944-1949
    • /
    • 2007
  • In this paper, a new plane-based computational reconstruction technique for three-dimensional (3D) objects in 3D internal imaging based on a lens model is proposed. For the proposed technique, computational experiments have been carried out for various test images. Resolution of the reconstructed images is analyzed and compared with that obtained by the conventional technique. From experiments, it is shown that the resolution of a 3-D reconstructed image was improved by using the proposed technique.

Plane-based Computational Integral Imaging Reconstruction Method of Three-Dimensional Images based on Round-type Mapping Model (원형 매핑 모델에 기초한 3차원 영상의 평면기반 컴퓨터 집적 영상 재생 방식)

  • Shin, Dong-Hak;Kim, Nam-Woo;Lee, Joon-Jae;Kim, Eun-Soo
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.11 no.5
    • /
    • pp.991-996
    • /
    • 2007
  • Recently, a computational reconstruction method using an integral imaging technique, which is a promise three-dimensional display technique, has been actively researched. This method is that 3-D images can be digitally reconstructed at the required output planes by superposition of all of the inversely enlarged elemental images by using a hypothetical pinhole array model. However, the conventional method mostly yields reconstructed images having a low-resolution, because there are some intensity irregularities with a grid structure at the reconstructed mage plane by using square-type elemental images. In this paper, to overcome this problem, we propose a novel computational integral imaging reconstruction (CIIR) method using round-type mapping model. Proposed CIIR method can overcome problems of non-uniformly reconstructed images caused from the conventional method and improve the resolution of 3-D images. To show the usefulness of the proposed method, both computational experiment and optical experiment are carried out and their results are presented.

Analysis of 3D reconstructed images based on signal model of plane-based computational integral imaging reconstruction technique (평면기반 컴퓨터 집적 영상 복원 기술의 신호모델을 이용한 3D 복원 영상 분석)

  • Shin, Dong-Hak;Yoo, Hoon
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.13 no.1
    • /
    • pp.121-126
    • /
    • 2009
  • Plane-based computational integral imaging (CIIR) provides the reconstruction of depth-dependent 3D plane images. However, it has problem degrading the resolution of reconstructed images due to the artifact noise according to the depth. In this paper, to overcome this problem, a signal model for plane-based CIIR is explain. Also the compensation process is introduced to remove the noise caused from CIIR. Computational experiments show that we analyze the characteristics of noise in the reconstructed image of 2D Gaussian image and the high-resolution images can be obtained by using the compensation process.

Resolution enhancement of 3D images using computational integral imaging reconstruction method based on scale-variant magnification (크기가변 확대 기법 기반의 컴퓨터적 집적 영상 방법을 이용한 3D 영상의 해상도 개선)

  • Shin, Dong-Hak;Yoo, Hoon
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.12 no.12
    • /
    • pp.2271-2276
    • /
    • 2008
  • In this paper, we propose a computational integral imaging reconstruction (CIIR) method based on scale-cariant magnification technique for resolution-enhanced 3D images. First, we introduce an interference problem among elemental images in CIIR. Magnification by a large factor causes inference among elemental images when they are applied to the superposition process. Thus, the resolution of reconstructed images is limited. To overcome the interference problem, we propose a method to calculate a minimum magnification factor while CIIR is still valid. Magnification by a new factor enables the Proposed method to reconstruct resolution-enhanced images. In addition, the computational load of the proposed method is less than that of the previous method. To confirm the feasibility of the proposed method, some experiments are carried out and the results are presented.

Enhancement of 3D image resolution in computational integral imaging reconstruction by a combination of a round mapping model and interpolation methods (원형매핑 모델과 보간법을 복합 사용하는 컴퓨터 집적 영상 복원 기술에서 3D 영상의 해상도 개선)

  • Shin, Dong-Hak;Yoo, Hoon
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.12 no.10
    • /
    • pp.1853-1859
    • /
    • 2008
  • In this paper, we propose a novel method to improve the visual quality of reconstructed images for 3D pattern recognition based on the computational integral imaging reconstruction (CIIR). The proposed CIIR method provides improved 3D reconstructed images by superimposing magnified elemental images by a combination of a round mapping model and image interpolation algorithms. To objectively evaluate the proposed method, we introduce an experimental framework for a computational pickup process and a CIIR process using a Gaussian function and evaluate the proposed method. We also carry out experiments on 3D objects and present their results.

Enhanced Reconstruction of Heavy Occluded Objects Using Estimation of Variance in Volumetric Integral Imaging (VII) (Volumetric 집적영상에서 분산 추정을 이용한 심하게 은폐된 물체의 향상된 복원)

  • Hwang, Yong-Seok;Kim, Eun-Soo
    • Korean Journal of Optics and Photonics
    • /
    • v.19 no.6
    • /
    • pp.389-393
    • /
    • 2008
  • Enhanced reconstruction of heavy occluded objects was represented using estimation of variance in computational integral imaging. The system is analyzed to extract information of enhanced reconstruction from an elemental images set. To obtain elemental images with enhanced resolution, low focus error, and large depth of focus, synthetic aperture integral imaging (SAII) utilizing a digital camera has been adopted. The focused areas of the reconstructed image are varied with the distance of the reconstruction plane. When an occluded object is occluded heavily, an occluded object can not be reconstructed by removing the occluding object. To obtain reconstruction of the occluded object by remedying the effect of heavy occlusion, the statistical technique has been adopted.